向量心得体会现代范文 现代生物技术概论心得体会范文(6篇)
我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间的学习、工作生活状态。那么我们写心得体会要注意的内容有什么呢?下面小编给大家带来关于学习心得体会范文,希望会对大家的工作与学习有所帮助。
推荐向量心得体会现代范文一
1.在教材中的地位与作用
本章内容《空间向量与立体几何》是在学习了立体几何的基本理论(必修2)和空间向量知识(必修4)的基础上提出的,本章的前三节已经将平面向量中的相关知识推广到了空间,为本节的学习和研究奠定了基础.本节主要是利用向量工具研究空间中的线线、线面、面面的位置关系,是立体几何的重要方向,是向量工具应用的重要方面,更是向量法解决立体几何问题的重要课题,是本章的核心内容.
2.教学目标分析
根据《新课程标准》的理念,基于对教材的理解和分析,考虑到学生已有的认知结构及心理特征,制定如下三维教学目标:
(1)知识与技能目标
能用向量语言表述空间中线线、线面、面面的垂直与平行的位置关系;
掌握平面的法向量的求法.
(2)过程与方法目标
结合已有的立体几何知识,运用向量方法,解决立体几何中垂直与平行的问题.
(3)情感态度与价值观目标
体验科学探索的曲折过程,感受在探索问题的过程中的挫折感和成就感,培养合作意识和创新精神,激发学习兴趣.
3.教学重难点分析
根据以上教学目标,教学重难点确定如下:
教学重点:能用向量方法判断垂直与平行的位置关系;会求平面的法向量.
教学难点:结合已有的立体几何知识,运用向量方法,用向量语言证明垂直与平行的问题.
学生已经学习了立体几何中线线、线面、面面的位置关系,具备有关知识储备,对坐标法解决几何问题也有了初步的认识.但是利用向量工具解决空间中垂直与平行的问题还没有系统的学习过,需要老师循序渐进的引导.
1.教学:启发引导、数形结合、案例分析、构建模型.
2.学法:观察分析、自主探究、合作交流、讨论归纳.
本节课主要分五个环节来完成:复习引入、自主探究、知识运用、课堂小结及布置作业.
(一)复习引入
给出三个问题,让学生思考:什么是直线的方向向量?什么是平面的法向量?如何利用向量知识判断直线与平面间的平行或垂直问题?
设计意图:1.个问题是引导学生复习已有的知识,为本节课的学习起到铺垫作用;2.个问题是引导学生思考与本节课有关的问题.
(二)自主探究
观察图形,并用向量语言表述以下位置关系:
设计意图:1.本节课本给出的三个例题都是证明题,起点相对较高,考虑到学生的认知结构及心理特征,先给出两个例题(非证明题)作为铺垫.2.引导学生用向量方法思考问题,让学生体会利用向量判断垂直与平行的方法,突破重点.
3.由例1体会到判断线面位置关系时,平面法向量的重要性.如何求平面的法向量?引出例2.
总结:求平面法向量的基本步骤.
设计意图:1.掌握平面法向量的求法.至此突破重点.2.本题用到的理论依据是线面垂直的判定定理,这个定理用向量方法如何证明?引出例3.
例3.(线面垂直判定定理)若一条直线垂直于一个平面内的两条相交直线,则该直线与此平面垂直.
设计意图:让学生从理论上学会用向量方法证明几何问题,从另一个侧面体现了利用向量方法研究垂直与平行的重要性,至此突破难点.
【方法归纳】:用空间向量解决立体几何问题的“三步曲”
(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)
(2)通过向量运算,研究点、直线、平面之间的位置关系等问题;(进行向量运算)
(3)把向量的运算结果“翻译”成相应的几何意义.(回到图形问题)
设计意图:由例3归纳解题步骤,帮助学生梳理解题思路,构建知识体系.
学生练习:完成课本41页练习:1.2.3.
(以上三道题目考察的知识点依次是:线线位置关系,线面位置关系,面面位置关系)
设计意图:学生自己检验是否掌握了所学知识,并对所学方法加深理解.
(四)课堂小结(讨论归纳)
(1)用向量表示线线、线面、面面垂直与平行的关系;
(2)求法向量的步骤;
(3)用向量方法解决立体几何问题的步骤.
设计意图:引导学生对本节知识进行回顾,同时检验学生对本节知识的掌握程度,有利于教师更好的根据学生的情况进行针对性的辅导.
(五)布置作业(反馈提升)
1.课本42页第2、3题;2.学有余力的同学完成课本41页的思考交流
(第2、3题考察的知识点依次是:线线位置关系,面面位置关系;思考交流是对“面面垂直的判定定理”的证明)
设计意图:分层布置作业,尽可能适应不同层次学生的需要.通过完成作业,学生可以巩固所学知识,反馈学习效果,同时也起到了复习的作用.在做作业的同时,可以加深对知识的理解,提升思维能力.
(1)以属性结合的思想方法贯穿于整节课,有助于学生更好的理解;
(2)根据学生已有的知识水平合理设计本节课的例题,体现了以学定教,以学生为主体,合作探究的新课程理念;
(3)题目梯度设置合理,有效学生突破重难点;
(4)在知识的巩固练习部分还有待加强,更好的提升学生思维水平和能力。
推荐向量心得体会现代范文二
向量作为一种基本工具,在数学解题中有着极其重要的地位和作用。利用向量知识,可以解决不少复杂的的代数几何问题。《空间向量数量积及其应用》,计划安排两节课时,本节课是第2课时。也就是,在有了平面向量数量积公式,空间向量坐标表示,以及空间向量数量积的基础知识之后,本节课是进一步去认识、掌握空间向量数量积的变形公式,然后,围绕着空间向量的几何应用展开讨论和研究。
通常,按照传统方法解立体几何题,需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难。用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高。
知识目标:① 掌握空间向量的数量积公式及向量的夹角公式;
② 运用公式解决立体几何中的有关问题。
能力目标:① 比较平面、空间向量,培养学生观察、分析、类比转化的能力;
② 探究空间几何图形,将几何问题代数化,提高分析问题、解决问题的能力。
情感态度、价值观目标:
① 通过师生的合作与交流,体现教师为主导、学生为主体的教学模式;
② 通过空间向量在立体几何中的应用,提高学生的空间想象力,培养学生探索精神和创新意识,让学生感受数学,体会数学美的魅力,激发学生学数学、用数学的热情。
重点:空间向量数量积公式及其应用。
难点:如何将几何问题等价转化为向量问题;在此基础上,通过向量运算解决几何问题。
教法:采取启发引导、形数转化、反馈评价等方式;
学法:体现自主探索、观察发现、类比猜想、合作交流等形式。
根据二期课改的精神,本着“以学生发展为本”的教学理念,结合学生实际,对教学内容作了如下的调整:基于教材中主要是运用向量夹角求异面直线所成的角,所以,首先让学生掌握教材所要求的基本面;其次,鉴于向量兼容了代数、几何的特色,有着其独特的魅力和发展前景,为进一步让学生感受“向量法”的优势,安排了两个分别运用向量的“代数运算”和“几何运算”来处理空间几何问题的典型例题,为解决空间的度量、位置关系问题找到一种新方法,进一步拓展了学生的思维渠道。以下,是我制定的教学流程:
创设情境,提出问题 类比猜想,探求新知 公式运用,巩固提高 回顾小结,整体感知 课外探究,激发热情
教学过程如下:
给出问题一:已知在正方体abcd-a1b1c1d1中,ae=ea1,
d1f= ,如何确定 的夹角?
[设计意图]:问题的给出,一时之间可能会使学生感到突然,但预计应该会让他们联想到平面向量的夹角公式,由此作一番类比猜想,起到温故知新的作用。
[处理过程]:
设问:平面向量的夹角问题如何求得的?
是否可将平面内求得两向量的夹角公式推广到空间?公式的形式是否会有所变化?
学生活动:回顾平面向量数量积、向量夹角公式及其坐标表示;类比猜想
向量心得体会现代范文 现代生物技术概论心得体会范文(6篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。