电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

勾股定理教案范文 勾股定理数学教案(4篇)

来源:互联网作者:editor2024-02-202

作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么我们该如何写一篇较为完美的教案呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。

最新勾股定理教案范文(推荐)一

勾股定理是九年制义务教育教科书八年级下册第十七章的内容,是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

针对八年级学生的知识结构、心理特征及学生的实际情况,可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

(一)知识与技能

1、体验勾股定理的探索过程,会运用勾股定理解决简单的问题。

(二)过程与方法

1、让学生经历用面积法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法,体验从特殊到一般的逻辑推理过程。

(三)情感态度与价值观

1、通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

2、让学生体验自己努力得到结论的成就感,体验数学充满了探索和创造,感受数学之美,探究之趣。

重点:会用勾股定理求直角三角形的边长

难点:勾股定理的探索过程

多媒体课件

6.1第一学时

教学活动

活动1

【导入】欣赏图片,了解历史

2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.

(1)你见过这个图案吗?

(2)你听说过“勾股定理”吗?

学生活动:学生观察图片,发表见解。

资源准备:教师演示多媒体课件

设计意图:从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料。

活动2【讲授】探索勾股定理

探究一:探索直角三角形三边的特殊关系:

(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;

直角三角形1

直角边一a=3

直角边二b=4

斜边c=?

猜想三边关系满足关系:

直角三角形2

直角边一a=5

直角边二b=?

斜边c=13

猜想三边关系满足关系:

(2)猜想:直角三角形的三边关系为

探究二:如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?

思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。

勾股定理:

直角三角形等于

几何语言表述:

如图,在rtδabc中,c=90°,则:

若bc=a,ac=b,ab=c,则上面的定理可以表示为:

学生活动:在独立探究的基础上,学生分组交流。

资源准备:教师演示多媒体课件

设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。

活动3【讲授】证明勾股定理

是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明方法已有几百种之多.下面,我们就来看一看我国数学家赵爽是怎样证明这个命题的。

(1)以直角三角形abc的两条直角边a、b为边作两个正方形.你能通过剪、拼把它拼成弦图的样子吗?

(2)面积分别怎样表示?它们有什么关系呢?

例1:已知,在△abc中,∠c=90°,∠a、∠b、∠c的对边

为a、b、c。求证:a2+b2=c2。

分析:

⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,

让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:

4s△ s小正=s大正

2ab+(b-a)2=c2

化简可证

学生活动:学生在独立思考的基础上以小组为单位,动手拼接。

资源准备:教师演示多媒体课件

设计意图:通过拼图活动,调动学生思维的积极性,锻炼学生的动手实践能力,为学生提供从事数学活动的机会,建立初步的空间观念,发展形象思维。通过对定理的证明,让学生确信定理的正确性。

活动4【练习】简单应用勾股定理解题

1、求下图中字母所代表的正方形的面积

2、求出下列各图中x的值。

3、如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。旗杆折断之前有多高?

4、如图,点c是以ab为直径的半圆上一点,∠acb=90°,ac=3,bc=4,则图中阴影部分的面积是多少?

学生活动:学生独立思考完成

设计意图:教师利用学生已有的知识创设问题情境,有针对性地引导学生进行练习,为学习勾股定理在实际生活中的应用做好铺垫。

活动5【作业】总结反思,布置作业

1、本节课你有哪些收获?

2、还有哪些疑问?

3、作业:略

学生活动:学生归纳、总结谈感受

设计意图:通过小结能为学生从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。

活动6【讲授】板书设计

勾股定理

一、定理:如果直角三角形的两直角边长分别为a,b,

斜边为c,那么

二、证明:略

三、应用:

活动7【作业】教学反思

本节课涉及了大量的有关勾股定理的背景知识,学生可以感受到勾股定理所蕴含的浓郁的数学文化。教学中应聆听学生发言,尊重学生发展。积极引导学生深挖细究,体现过程方法。教学中应着力激发学生学习数学的兴趣,也要注重自主探索与合作交流,同时还要注意数学思想方法的渗透,为学生今后的发展拓展了空间。

17.1勾股定理

课时设计课堂实录

17.1勾股定理

1第一学时教学活动活动1【导入】欣赏图片,了解历史

2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.

(1)你见过这个图案吗?

(2)你听说过“勾股定理”吗?

学生活动:学生观察图片,发表见解。

资源准备:教师演示多媒体课件

设计意图:从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料。

活动2【讲授】探索勾股定理

探究一:探索直角三角形三边的特殊关系:

(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;

直角三角形1

直角边一a=3

直角边二b=4

斜边c=?

猜想三边关系满足关系:

直角三角形2

直角边一a=5

直角边二b=?

斜边c

勾股定理教案范文 勾股定理数学教案(4篇)

作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么我们该如何写...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?