分数除以整数教学设计通用 整数除以分数课件(5篇)
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
关于分数除以整数教学设计通用一
1、联系生活实际,感受数学化。
数学来源于生活,应用于生活。课伊始,在轻松的聊天环境中,引入分数,勾起学生的分数的认识。在接下来的一系列举例中,始终都在强调“在生活中”可以把什么平均分,“在生活中”还可以把什么看做单位“1”。通过学生熟悉的事物,将抽象的分数具体化。
2、创设自主学习环境,促进有效学习。
在教师的引导下,明确一些物体可以看做单位“1”进行平均分得到分数后,创设环境让学生自己通过手中的事物进行平均分,从中得到分数。通过学生独立思考,动手实践,合作交流,经历了猜测、试验、推理、证明等环节,让学生在足够的时间和空间中主动和富有个性的学习。对于数学知识的最终结论,不仅仅停留在知道了,而是让学生亲手操作,在具体的试验中,真正做到知其然,还知其所以然。
3、以学生已有认知水平为基础。
《课标》中指出:教师的教学应该以学生的认知水平和已有的经验为基础,面向全体学生。因此本节课从传统的书本知识向学生的生活数学开放,把学生的个体知识,直接经验看成重要的课程资源,从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学知识,并鼓励学生独立思考,从已有的知识经验入手,努力探索新知,让预设的教学目标在实施过程中开放的纳入到学生的直接体验中。
上完这节课我觉得还有一些不足值得改进,自己在课堂上对时间的掌控能力还有待提高,以至于不能很好的整体把握课堂教学节奏,显得前松后紧。还有在学生进行汇报时,教师有些操之过急,面对学生出现的问题,没能顺利的引导学生自己去解决问题,而是教师替为代之。从以上看出自己的课堂驾驭能力还很匮乏,需要不断地锻炼,提高。
有人说,课堂教学是一门科学,也是一门艺术。课堂教学的艺术贯穿于课堂教学全过程,在课堂教学的每一个环节,都应该讲究教学艺术。在今后的教学中,我会更加的努力学习,钻研,提高自己的业务水平,提高课堂教学效率,提高教育教学质量。努力创设一种和谐的课堂教学结构,从而真正的把学习的自由还给学生,把学习的权利还给学生,把学习的时间还给学生,把学习的快乐带给学生。
关于分数除以整数教学设计通用二
本节课是北师大版数学五年级上册第三单元的内容。
1、理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。
2、通过动手实践,发现并总结规律,能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
3、激发学生积极主动的情感状态,养成注意倾听的习惯,在实践操作中体验成功的快乐。
理解和掌握分数的基本性质,会运用分数的基本性质。
1、创设情景,激发学生的学习兴趣。
通过创设猴王分饼的情境,巧设悬念,激发学生求知欲望,既找到了教学的起点,又调动了学生探究的积极性,这种引课的方式取代了过去的“复旧引新”那种机械的模式。有效性和学生思维震荡的深刻性。
2、创造性地用好课程资源,体现新的教学理念。
教学通过折纸得出分数,认识到分数大小相等,并探究出规律,这一部分内容跳出教材圈子,有机地整合了教材,把教材的做一做作为巩固知识的载体。利用折纸得出的多媒体演示、三个大小不变的分数,把学生们带入一个探究的空间,感知分数的基本性质的来历,同时学生对分数的分母和分子之间的关系产生疑问,通过引发学生的认知冲突,激发学生探索求知的欲望。
3、整节课力求体现探究学习的基本要求,让学生的学习主体地位得到体现,使学生学习积极性较高涨。
(一)、创设情景,设疑
教师创设猴王分饼的情景:同样大小的饼,第一只小猴分得,第二只小猴分得,第三只小猴分得,它们谁分得多?学了今天的内容你就明白了,引入新课。
(设计意图:故事引入,设置悬念,使学生急于想弄明白谁多谁少,激发学生的求知欲望)
关于分数除以整数教学设计通用三
《分数的意义和性质》这一单元是学生系统学习分数的开始。内容包括:分数的意义、分数与除法的关系,真分数与假分数,分数的基本性质,最大公因数与约分,最小公倍数与通分以及分数与小数的互化。本单元教学的特点就是概念教学,教学的重点是概念的形成,教学的难点是概念的形成和运用。
通过本单元的教学,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生,分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数互化的技能。这些知识在后面系统学习分数四则运算及其应用都要用到。因此,学好本单元的内容是顺利掌握分数四则运算并学会应用分数知识解决问题一系列实际问题的必要基础。
一、充分利用教材资源,用好直观手段。
本单元的概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、为直观。教学时加大思维的形象性(比如:图、线段图、集合图)
二、及时抽象,在适当的抽象水平上建构数学概念的意义。
在充分展开直观教学的基础上,抓住时机引导学生由实例、图示加以概括,建构概念的意义。
三、揭示知识与方法的内在联系,在理解的基础上掌握方法。
比如:约分和通分,这两概念学生很容易混淆,因此教学时要提醒学生,不管是约分还是通分都是根据分数的基本性质,使分数的大小保持不变,约分就是把一个分数的分子和分母变小,而通分则是把几个异分母分数变成同分母分数。
①商不变的性质与分数的基本性质的联系
②分数的基本性质与约分、通分的联系
③用字母表示数:分数与除法的关系,分数的基本性质 (0除外)
④因数——公因数——最大公因数——约分
倍数——公倍数——最小公倍数——通分
⑤单位换算——除法——分数——约分。教学实践证明,学生对最简分数、约分的意识淡薄。
学生对约分,结果保留最简分数的意识淡薄,教学时要加强。
关于分数除以整数教学设计通用四
一、教学内容:人教版教材五
分数除以整数教学设计通用 整数除以分数课件(5篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。