数学这些事心得体会及收获 自己在数学上的收获和体会(6篇)
体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会下面我给大家整理了一些心得体会范文,希望能够帮助到大家。
主题数学这些事心得体会及收获一
联系当前高三数学复习备考的实际,无论是在第一轮知识方法系统的重新构建,还是在第二轮的专题强化训练中,解题教学无疑占据着“半壁江山”。各种训练题、模拟题层出不穷,铺天盖地,异常是最终一个多月,考试甚至成为不少学生每一天殚精竭虑、疲于奔命的主流生活,也成为一些教师手中提升学生应考本事的法宝。可是,“题海无边,何处是岸?”学生“题海挣扎”的结果又如何?应对一些学生一次次在同一个坎上跌倒,一次次在同一个“陷阱”里失足,一次次在同一个岔路口徘徊确实应当引起我们教师的反思、深思?
高三数学复习课,基本的模式是学生练后,以教师讲、学生听的传统模式呈现,往往是教师讲得口若悬河,口干舌燥;而学生听得却不甚明白,提不起精神。我在最终的那个月的一些测试以后和一些同学交流,问他们是否懂得从试卷中反思,然后提高。而事实上解题反思是大多数同学的弱项,不知反思,不知如何反思,不知反思什么是很多同学的共同点。已经折射出了解题教学中的重大失误。
直面高三的现实,很多解题是回避不了的。问题是教师在解题教学中教了什么?引导了什么?培养了什么?有什么得失?学生在解题过程中探究了什么?体验到了什么?收获了什么?有什么成功的经验和失败的教训?有什么抵达不了的困惑?这些都是需要共同反思的。所以,在高三的复习备考进程中,我觉得解题反思无疑是一个重要课题和环节。
我在网上看了一篇曹凤山教师文章“数学解题——想说爱你不容易”他里面介绍解题反思的原则则可简略地概括为“行后三思”。
一思“对”——回顾解题过程:策略是否可取?
即在解题后引导学生反思:为什么要这么做?为什么不能那样做?这样做正确吗?(或完备吗?)这样做的关键是什么?
二思“优”——审视解题过程:方法能否更佳?
即在解题后引导学生反思:我会这样做了,但这样做感觉如何?我还能怎样做?有没有更好的做法?
三思“通”——变换题设或结论:规律能否推广?
即在解题后引导学生反思:如果变更题设,结论又怎样?如果题设必须,结论能否更趋一般?经过探究通性寻找通法。
如何让学生在长期的解题中坚持做好解题反思,坚持做好以下三个方面是行之有效的。
一、建立档案以备反思.将平时训练题中、考试题中自我做错的问题(尤其是非计算失误所致的错误)集中记载下来,包括原始的错误过程与方法,第一次更正的过程与方法,归类整理,留下空白,以备日后反思。如果下次不再失误便是收获,如果下次继续失误则应高度警惕,深刻反思前次有什么反思不到位之处。
二、典型问题重点反思.高中数学知识点多,综合运用本事要求较高,反思不可能面面俱到,抓住典型就抓住了重点,对于典型问题的反思要求要深刻、全面。比如“数列”一章中数列的通项与求和就是两个典型问题,数列与函数、数列与不等式就是两个综合运用的典型,对于它们的基本方法必须掌握牢固,对于它们串联起来的知识和方法系统必须网络化,结构化切忌零碎、孤立,对于它们的综合运用必须做到举一反三。从这几个方面反思自我做得怎样?
三、疑难问题反复反思.疑难问题的消化,不可能一蹴而就,它应当是一个反复的,螺旋式上升的结构。比如概念、性质中的疑点、难点、易错点和易混淆点,会经常碰到也可能经常出现失误,要经过多次的反思,一次次加深理解,最终到达根深蒂固。
在高三复习备考很多解题的实际中,解题反思有着重要的现实意义。仅有建立在不断反思的基础上的积累才能真正垒起应有的高度与厚度,它胜过一切机械的重复。否则机械地被动地解题,容易陷入“题海”战术的深渊。一句话概括:解题反思是高三复习备考中要把握的重要环节。
主题数学这些事心得体会及收获二
本章的重点内容是
一、多元函数(主要是二元、三元)的偏导数和全微分概念;
二、偏导数和全微分的计算,尤其是求复合函数的二阶偏导数及隐函数的偏导数;
三、方向导数和梯度(只对数学一要求);
四、多元函数微分在几何上的应用(只对数学一要求);
五、多元函数的极值和条件极值。
> 本章的常见题型有1.求二元、三元函数的偏导数、全微分。
2.求复全函数的二阶偏导数;隐函数的一阶、二阶偏导数。
3.求二元、三元函数的方向导数和梯度。
4.求空间曲线的切线与法平面方程,求曲面的切平面和法线方程。
5.多元函数的极值在几何、物理与经济上的应用题。
第4类题型,是多元函数的微分学与前一章向量代数与空间解析几何的综合题,应结合起来复习。
极值应用题多要用到其他领域的知识,特别是在经济学上的应用涉及到经济学上的一些概念和规律,读者在复习时要引起注意。一元函数微分学在微积分中占有极重要的位置,内容多,影响深远,在后面绝大多数章节要涉及到它。
本章内容归纳起来,有四大部分
1.概念部分,重点有导数和微分的定义,特别要会利用导数定义讲座分段函数在分界点的可导性,高阶导数,可导与连续的关系;
2.运算部分,重点是基本初等函的导数、微分公式,四则运算的导数、微分公式以及反函数、隐函数和由参数方程确定的函数的求导公式等;
3.理论部分,重点是罗尔定理,拉格朗日中值定理,柯西中值定理;
4.应用部分,重点是利用导数研究函数的性态(包括函数的单调性与极值,函数图形的凹凸性与拐点,渐近线),最值应用题,利用洛必达法则求极限,以及导数在经济领域的应用,如"弹性"、"边际"等等。
常见题型有
1.求给定函数的导数或微分(包括高阶段导数),包括隐函数和由参数方程
确定的函数求导。
2.利用罗尔定理,拉格朗定理,拉格朗日中值定理,柯西中值定理证明有关命题和不等式,如"证明在开区间至少存在一点满足……",或讨论方程在给定区间内的根的个数等。
此类题的证明,经常要构造辅助函数,而辅助函数的构造技巧性较强,要求读者既能从题目所给条件进行分析推导逐步引出所需的辅助函数,也能从所需证明的结论(或其变形)出发"递推"出所要构造的辅函数,此外,在证明中还经常用到函数的单调性判断和连续数的介值定理等。
3.利用洛必达法则求七种未定型的极限。
4.几何、物理、经济等方面的最大值、最小值应用题,解这类问题,主要是确定目标函数和约束条件,判定所论区间。
主题数学这些事心得体会及收获三
在数学中,加法是一种常用的计算方法,也是基础的基础,由于本课是学生第一次正式接触加法,因此学好这一课,对以后的数学学习至关重要。虽然,在学生以往的生活经历中,一些日常问题的解决使得他们对加法产生了或多或少的朦胧印象,但是,让学生真正地了解加法并运用加法解决问题,这还是第一次。因此,本节课教学的重难点是:让学生真正理解加法的含义并能运用加法去解决实际问题,用数的组成知识去做加法。
一、导入凸显分与合的思想。
加法的含义来自于分与合的思想。在教学开始时,以几组变式的分与合作为基础,铺垫让学生初步感受今天我们要用分与合来解决新问题。
二、从算理中教学。
在例题教学时,我通过图意变化,引导学生看变化的过程,说清图的意思。(校园里3个小朋友在浇花,又来了2个)。同时以提问的方式出现第三句话:一共有几个小朋友?给学生初步建立条件与问题的概念,了解看图是要解决问题。大部分学生已经能够看图列出加法算式:3 2=5。这部分是学生的已有经验,我把重点放在了算式含义的讲解,计算教学重在算理。我采用了接受式学习方式,“ ”学生已经认识,而是通过口头语言和肢体语言让学生感受“ ”的意义是合起来,将形象上的“合”和意义上的“合”结合起来。算式“3 2=5”中“3”、“2”、“5”的意义解释,学生能够结合具体情境来解释,说明学生能够理解数的意义了,学生能够通过分与合的经验说出算式的意义,让学生经历形象——数——符号——语言——初步将意义整合,最后将“3 2=5”意义精简为“3和2合起来是5”。
三、用今天学习的知识解决实际问题
不同层次的练习符合能力的需要,重在拓展学生的能力。
摆一摆、说一说,将摆说结合,将动作和语言相连接。
看算式,摆一摆则是对数形的结合。
说一说、填一填。让学生观察情境图,学生能够自己看图说意思、提问题、列算式。通过情境的变化,发现三道 算式中的规律,先是有经验的积累算式,再由现象观察算式,到分析算式、比较归纳。
算一算、填一填。直接写出得数,比较“2 1=3”和“1 2=3”之间的规律:加号前后交换位置的得数不变,再通过找到的规律让学生自己找算式,充分给学生空间拓展能力。
送信连一连。将连线题和有序的排一排结合在一起,将得数是5的算式全部找到。这部分环节让学生自己动手,上黑板排序、说一说,体现了学生是课堂的主体这一数学思想。
看一看,列算式。出现整幅综合图,让学生自己从图中找信息,列出相应的加法算式。学生能够充分的说图意,列出不同形式的加法算式,说明学生不但会计算,还能通过加法来解决实际问题。
四、总结突出算理。
本节课的总结关键就突出“ ”的含义——合起来。在课的最后再回到导入的铺垫,用分与合的知识解决加法计算。
这节课还存在许多不足的地方。我可以通过语音语调来吸引学生的注意,而不是一味高调;在送信环节,学生一开始出现从大到小、从小到大的顺序排列,在这里可以放手让学生自己再去排一排,学生能够根据分与合的联系出现两组算式,让学生认识事物的对比过程,自主的找到算式之间的联系,而不是教师自主将这一环节延后出现;在教学中还要充分注重教是为学服务的。
主题数学这些事心得体会及收获四
从事高中数学教学工作已将近两年的时间了。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,这对于刚刚接触高中教学的我来说,是一个很重要的课题。要教好高中数学,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,构成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,个性是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务。
一、要有明确的教学目标
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选取教学的策略、方法和媒体,把资料进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要透过师生的共同努力,使学生在知识、潜力、技能、心理、思想品德等方面到达预定的目标,以提高学生的综合素质。
二、要能突出重点、化解难点
每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,能够在黑板的一角将这些资料简短地写出来,以便引起学生的重视。讲授重点资料,是整堂课的教学高潮。教师要透过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,适当地还能够插入与此类知识有关的笑话,对所学资料在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的理解潜力。
三、根据具体资料,选取恰当的教学方法
每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学资料的变化,教学对象的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识,也能够结合课堂资料,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习用心性,有助于学生思维潜力的培养,有利于所学知识的掌握和运用,都是好的教学方法。
四、关爱学生,及时鼓励
高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲资料的掌握状况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,能够对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
五、切实重视基础知识、基本技能和基本方法
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有透过解决难题才能培养潜力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就透过超多的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内
在的规律,就让学生去做题,试图透过让学生超多地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中决定错误。不少学生说:此刻的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及潜力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。
六、渗透教学思想方法,培养综合运用潜力
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮忙学生掌握科学的方法,从而到达传授知识,培养潜力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。
总之,在新课程背景下的数学课堂教学中,要提高学生在课堂45分钟的学习效率,要提高教学质量,我们就就应多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用
主题数学这些事心得体会及收获五
我认真执行学校教育教学工作计划,转变思想,积极探索,改革教学,在继续推进我校“自主——创新”课堂教学模式的同时,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学,收到很好的效果。
一、数学教学不能只凭经验
从经验中学习是每一个人天天都在做而且应当做的事情,然而经验本身的局限性也是很明显的,就数学教学活动而言,单纯依赖经验教学实际上只是将教学实际当作一个操作性活动,即依赖已有经验或套用学习理论而缺乏教学分析的简单重复活动;将教学作为一种技术,按照既定的程序和一定的练习使之自动化。它使教师的教学决策是反应的而非反思的、直觉的而非理性的,例行的而非自觉的。这样从事教学活动,我们可称之为经验型的,认为自己的教学行为传递的信息与学生领会的含义相同,而事实上这样往往是不准确的,因为师生之间在数学知识、数学活动经验、社会生活阅历等方面的差异使得这样的感觉通常是不可靠的,甚至是错误的。例如:多年来我们在上复习课的时候总有一个将知识做为小结的环节,而且都是由教师给出答案,例如用语言或图表罗列出所学知识。潜意识里认为学生是无法给出令人满意的知识网的,事实并非如此,在教学实验中学生能给出的总结形式包括:
表格式——条理性很强。思路清晰,概括能力强,有较强的周详思维能力,内容包括章节的内容说明,主要运算法则,各种问题的解题方法、注意事项及例题。趣味式——具体、形象而且生动、有趣表现出制作者有着成人思索不及的丰富的想象力、形象思维能力。
汇报式——内容丰富、过程详尽。表现出制作者情感丰富、能够客观的剖析自我。包括章节的主要内容,自我收获学习过程中的感想、困惑和对教师的感激之情。
体会式——感受真切、信息丰富。表现出制作者能够坦诚道出对学习对象的真实感受。如数学很有趣它与生活是紧密联系的,既能解决生活中的实际问题,又能使人变得聪明。
可见,单纯凭多年积累起来的教学经验也不能够准确的把握我们正面临的家学对象。学生发生了很大的变化,知识背景、学习数学的意义、不同的文化氛围都带来了影响。
二、理智型的教学需要反思
理智型教学的一个根本特点是职业化。它是一种理性的以职业道德、职业知识作为教学活动的基本出发点,努力追求教学实践的合理性。从经验型教学走向理智型教学的关键步骤就是教学反思。对一名数学教师而言教学反思可以从以下几个方面展开:对数学概念的反思、对学数学的反思、对教数学的反思。
1. 对数学概念的反思——学会数学的思考
对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界。而对于教师来说,他还要从教的角度去看数学,他不仅要能做,还应当能够教会别人去做,因此教师对教学概念的反思应当从逻辑的、历史的、关系的等方面去展开。
2.对学数学的反思
当学生走进数学课堂时,他们的头脑并不是一张白纸——对数学有着自己的认识和感受。教师不能把他们看着空的容器,按照自己的意思往这些空的容器里灌输数学这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。
要想多制造一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题挤出来,使他们解决问题的思维过程暴露出来。
3.对教数学的反思
教得好本质上是为了促进学得好。但在实际教学过程中是否能够合乎我们的意愿呢?
我们在上课、评卷、答疑解难时,我们自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,自己的讲解并没有很好的针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题,学生当时也许明白了,但并没有理解问题的本质性的东西。
三、教师对教学反思要注意的四个视角
1.自我经历:在教学中,我们常常把自己学习数学的经历作为选择教学方法的一个重要参照,我们每一个人都做过学生,我们每一个人都学过数学,在学习过程中所品尝过的喜怒哀乐,紧张、痛苦和欢乐的经历对我们今天的学生仍有一定的启迪。
当然,我们已有的数学学习经历还不够给自己提供更多、更有价值、可用作反思的素材,那么我们可以重新做一次学生以学习者的身份从事一些探索性的活动,并有意识的对活动过程的有关行为做出反思。
2.学生角度:教学行为的本质在于使学生受益,教得好是为了促进学得好。
在新课程实验中,学习分段函数时,让学生去了解出租汽车的出租费用、或家长工资中的扣税标准,并写出调查报告。
在讲习题时,当我们向学生介绍一些精巧奇妙的解法时,特别是一些奇思妙解时,学生表面上听懂了,但当他自己解题时却茫然失措。
我们教师在备课时把要讲的问题设计的十分精巧,连板书都设计好了,表面上看天衣无缝,其实,任何人都会遭遇失败,教师把自己思维过程中失败的部分隐瞒了,最有意义,最有启发的东西抽掉了,学生除了赞叹我们教师的高超的解题能力以外,又有什么收获呢?所以贝尔纳说构成我们学习上最大障碍的是已知的东西,而不是未知的东西
大数学家希尔伯特的老师富士在讲课时就常把自己置于困境中,并再现自己从中走出来的过程,让学生看到老师的真实思维过程是怎样的。人的能力只有在逆境中才能得到最好的锻炼。经常去问问学生,对数学学习的感受,借助学生的眼睛看一看自己的教学行为,是促进教学的必要手段。
3.与同事交流
同事之间长期相处,彼此之间形成了可以讨论教学问题的共同语言、沟通方式和宽松氛围,便于展开有意义的讨论。
主题数学这些事心得体会及收获六
挥手告别了寒假,我们迎来了更加紧张而繁忙的第二学期,对学生来说他们面临着人生的第一次重要考试――中考。而对于数学这120分的学科我该如何在短时间内提高复习的效率和质量,是9.8班孩子们所关心的,为此,我谈谈自己的一点点想法,仅供参考。
我先分析一下9.8班的数学情况:学生学习不踏实,不扎实,浮躁,不求甚解,书写不规范,不能吃苦,对开放题不是很拿手的特点,结合中考重点和分值分配的5:3:2比例,我将重心放在8上,要求学生对占50%的基础必须稳扎稳打,强调解题的书写格式,利用平时的练习训练书写格式,以中考的标准来要求平时的练习,对中等生学生要求必须抓好占30%的中档题,对个别聪明的学生练习一些开放题。
一、扎扎实实打好基础
1、重视课本,系统复习。初中数学基础包括基础知识和基本技能两方面。现中考仍以基础的为主,有些基础题是课本的原型或改造,后面的大题是教材题目的引伸、变形或组合,复习时应以课本为主。尤其课后的读一读,想一想,有些中考题就在此基础上延伸的,所以,在做题时注意方法的归纳和总结,做到举一反三。
2、充实基础,学会思考。中考时基础分很多,所以在应用基础知识时做到熟练、正确、迅速。上课要边听边悟,敢于质疑。
3、重视基础知识的理解和方法的学习。
基础知识既是初中所涉及的概念、公式、公理、定理等。掌握知识间的联系,要做到理清知识结构,形成整体知识,并能综合运用。例如:中考涉及的动点问题,既是方程、不等式与函数问题的结合,同时也涉及到几何中的相似三角形,比例推导等。还重视数学方法的考察。如:配方法、换元法、判别式等方法。
二、综合运用知识,提高自身的各种能力
初中数学基本能力有运算能力、思维能力、空间想象能力以及体现数学与生产、生活相关学科相联系的能力等等。
1、提高综合运用数学知识解题的能力。要求学生必须把各章节的知识联系起来,并能综合运用,做到触类旁通。目前应根据自身的实际,有针对性地复习,查漏补缺做好知识归纳、解题方法地归纳。
2、狠抓重点内容,适当练习热点题型。几年来,初中的数学的方程、函数、直线型一直是中考的重点内容。方程思想、函数思想贯穿试卷始终。另外,开放题、探索题、阅读理解题、方案设计、动手操作等问题也是中考的热点题型,所以应重视这方面的学习与训练,以便适应这类题型。
我们必须了解中考的有关的政策,避免走弯路,走错路。研读《中考说明》,看清范围,研究评分的标准,牢记每一个得分点。避免解题中出现“跳步”现象。
三、精选习题
1、初三下学期刚开始,每一周安排一次综合练习。让学生开始接触中考题型、题量,新课结束后就每周一次综合模拟测试。
2、每天利用几分钟时间练习。初一初二时是作为速度练习,初三时用作专题(解方程、方程组、不等式、不等式组、分解因式、代数式等)练习,在后段专门训练中考模拟试题中的选择题、填空题。其特点是题量少,时间短,反馈快,对中考模拟试题中的选择题、填空题是反复做(打乱次序)。
3、整合习题,把握重点难点。对中考题进行精选和整合,将重点放在第17―26题之间的基本重点部分。
四、制定复习计划,合理安排复习时间
一般来说,中考复习可安排三轮复习。
第一轮,摸清初中数学内容的脉络,开展基础知识系统复习,按初中数学的知识体系,可以把二十一章内容归纳成八个单元:①数与式{实数,整式,分式,二次根式}②方程(组)与不等式(组){一次方程(组),一元一次不等式(组),一元二次方程,分式方程,简单二元二次方程(组)}③函数与统计{一次函数,二次函数,反比例函数,统计}④三角形⑤四边形⑥相似形⑦解直角三角形⑧圆。中考试题中属于学生平时学习常见的“双基”类型题约占60%还多,要在这部分试题上保证得分,就必须结合教材,系统复习,对必须掌握的内容要心中有数,胸有成竹。在此我建议各位考生首先一定要配合你的老师进行复习,切忌走马观花,好高骛远,不要另行一套;其次,复习应配备适量的练习,习题的难度要加以控制,以中、低档为主,另外,对于你觉得较难的题,或者易错的题,应养成做标记的好习惯,以便在第二阶段进行再回头复习。注意:套题训练不易过早,参考资料应以单元为主,本阶段复习宜细不宜粗。
第二轮,针对热点,抓住弱点,开展难点知识专项复习。学数学的目的是为了用数学,近年来各地中考涌现出了大量的形式活跃、趣味有益、启迪智慧的好题目,各位考生应在老师的指导下,对这些热点题型认真复习,专项突破。热点题型一般有:阅读理解型、开放探究型、实际应用型、几何代数综合型、研究性学习型等。注意:你应该有一本各省市中考试题汇编资料,要知道外地考题中出现的精彩题型,往往就是本地命题的借鉴。
第三轮,锁定目标,备战中考,进行模拟训练。经过第一轮和第二轮的复习,学习的基础知识已基本过关,大约到五月中、下旬就应该是第三轮的模拟训练,其目的就是查漏补缺和调整考试心理,便于以状态进入考场,建议考生在做好学校正常的模拟训练之余,使用各地中考试卷,设定标准时间,进行自我模拟测验。注意:自己评分应按评分标准进行,且不可只看答案,不看给分点。
数学这些事心得体会及收获 自己在数学上的收获和体会(6篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。