电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

二次医保申请书怎么写 医保社保申请书怎么写(7篇)

来源:互联网作者:editor2024-02-012

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。

2023年二次医保申请书怎么写一

一元二次方程概念及一元二次方程一般式及有关概念。 教学目标

2

了解一元二次方程的概念;一般式ax bx c=0(a≠0)及其派生的概念;?应用一元二次方程概念解决一些简单题目。

1、通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义。 2.一元二次方程的一般形式及其有关概念。 3.解决一些概念性的题目。

4、通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。 重难点关键

1、?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。 2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念。 教学过程

一、复习引入

学生活动:列方程。 问题(1)古算趣题:“执竿进屋”

笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。 有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。 借问竿长多少数,谁人算出我佩服。

如果假设门的高为x?尺,?那么,?这个门的宽为_______?尺,长为_______?尺, ?根据题意,?得________. 整理、化简,得:__________. 二、探索新知

学生活动:请口答下面问题。

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们次数是几次? (3)有等号吗?还是与多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程。 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程。

2

一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax bx c=0(a≠0)。这种形式叫做一元二次方程的一般形式。

2

一个一元二次方程经过整理化成ax bx c=0(a≠0)后,其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

例1.将方程3x(x-1)=5(x 2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项。

2

分析:一元二次方程的一般形式是ax bx c=0(a≠0)。因此,方程3x(x-1)=5(x 2)必须运用整式运算进行整理,包括去括号、移项等。

解:略

注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号。

2

例2.(学生活动:请二至三位同学上台演练) 将方程(x 1) (x-2)(x 2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项。

22

分析:通过完全平方公式和平方差公式把(x 1) (x-2)(x 2)=1化成ax bx c=0(a≠0)的形式。 解:略

三、巩固练习

教材 练习1、2

补充练习:判断下列方程是否为一元二次方程?

(1)3x 2=5y-3 (2) x=4 (3) 3x-2

2

22

52 2 2

=0 (4) x-4=(x 2) (5) ax bx c=0 x

四、应用拓展

22

例3.求证:关于x的方程(m-8m 17)x 2mx 1=0,不论m取何值,该方程都是一元二次方程。

2

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m 17?≠0即可。

22

证明:m-8m 17=(m-4) 1

2

∵(m-4)≥0

22

∴(m-4) 10,即(m-4) 1≠0

∴不论m取何值,该方程都是一元二次方程。

2

? 练习: 1.方程(2a—4)x—2bx a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为

一元一次方程?

/4m/-4

2、当m为何值时,方程(m 1)x 27mx 5=0是关于的一元二次方程 五、归纳小结(学生总结,老师点评) 本节课要掌握:

2

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax bx c=0(a≠0)?和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用。 六、布臵作业

第2课时 21.1 一元二次方程

1、一元二次方程根的概念;

2、?根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目。 教学目标

了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题。 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根。同时应用以上的几个知识点解决一些具体问题。 重难点关键

1、重点:判定一个数是否是方程的根;

2、?难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。

教学过程

一、复习引入

学生活动:请同学独立完成下列问题。

2

问题1.前面有关“执竿进屋”的问题中,我们列得方程x-8x 20=0

列表:

问题2列表:

3

老师点评(略) 二、探索新知 提问:(1)问题1中一元二次方程的解是多少?问题2?中一元二次方程的解是多少? (2)如果抛开实际问题,问题2中还有其它解吗?

22

老师点评:(1)问题1中x=2与x=10是x-8x 20=0的解,问题2中,x=4是x 7x-44=0的解。(2)如

果抛开实际问题,问题2中还有x=-11的解。

一元二次方程的解也叫做一元二次方程的根。

2

回过头来看:x-8x 20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意。因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解。

2

例1.下面哪些数是方程2x 10x 12=0的根? -4,-3,-2,-1,0,1,2,3,4.

分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可。

2

解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x 10x 12=0的两根。

2

例2.若x=1是关于x的一元二次方程a x bx c=0(a≠0)的一个根,求代数式2007(a b c)的值

2 2

练习:关于x的一元二次方程(a-1) x x a-1=0的一个根为0,则求a的值

点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解。

例3.你能用以前所学的知识求出下列方程的根吗?

222

(1)x-64=0 (2)3x-6=0 (3)x-3x=0

分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义。 解:略

三、巩固练习

教材 思考题 练习1、2.

四、归纳小结(学生归纳,老师点评) 本节课应掌握:

(1)一元二次方程根的概念;

(2)要会判断一个数是否是一元二次方程的根;

(3)要会用一些方法求一元二次方程的根。(“夹逼”方法; 平方根的意义) 六、布臵作业

1、教材 复习巩固3、4 综合运用5、6、7 拓广探索8、9. 2.选用课时作业设计。

第3课时 21.2.1 配方法

运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程。 教学目标

理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题。

2

提出问题,列出缺一次项的一元二次方程ax c=0,根据平方根的意义解出这个方程,然后知识迁移到解

2

a(ex f) c=0型的一元二次方程。 重难点关键

2

1、重点:运用开平方法解形如(x m)=n(n≥0)的方程;领会降次──转化的数学思想。

22

2、难点与关键:通过根据平方根的意义解形如x=n,知识迁移到根据平方根的意义解形如(x m)=n(n≥0)的方程。 教学过程

一、复习引入

学生活动:请同学们完成下列各题 问题1.填空

222222

(1)x-8x ______=(x-______);(2)9x 12x _____=(3x _____);(3)x px _____=(x ____)。 问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(

p2p

) 。 22

问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如

何转化成一次?怎样降次?以前学过哪些降次的方法? 二、探索新知

4

上面我们已经讲了x=9,根据平方根的意义,直接开平方得x=〒3,如果x换元为2t 1,即(2t 1)=9,能否也用直接开平方的方法求解呢? (学生分组讨论)

老师点评:回答是肯定的,把2t 1变为上面的x,那么2t 1=〒3 即2t 1=3,2t 1=-3

方程的两根为t1=1,t2=--2

2 2 2

例1:解方程:(1)(2x-1)=5 (2)x 6x 9=2 (3)x-2x 4=-1

22

分析:很清楚,x 4x 4是一个完全平方公式,那么原方程就转化为(x 2)=1.

2

解:(2)由已知,得:(x 3)=2 直接开平方,得:x 3=

所以,方程的两根x1

x2

2

例2.市政府计划2年内将人均住房面积由现在的10m提高到14.4m,求每年人均住房面积增长率。 分析:设每年人均住房面积增长率为x.?一年后人均住房面积就应该是10 ?10x=10(1 x);二年后人均

2

住房面积就应该是10(1 x) 10(1 x)x=10(1 x) 解:设每年人均住房面积增长率为x,

2

则:10(1 x)=14.4

2

(1 x)=1.44

直接开平方,得1 x=〒1.2 即1 x=1.2,1 x=-1.2

所以,方程的两根是x1=0.2=20%,x2=-2.2

因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去。 所以,每年人均住房面积增长率应为20%。

(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么? 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程。?我们把这种思想称为“降次转化思想”。

三、巩固练习

教材 练习。 四、应用拓展

例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?

分析:设该公司二、三月份营业额平均增长率为x,?那么二月份的营业额就应该是(1 x),三月份的营

2

业额是在二月份的基础上再增长的,应是(1 x)。 解:设该公司二、三月份营业额平均增长率为x.

2

那么1 (1 x) (1 x)=3.31 把(1 x)当成一个数,配方得:

22

1232

)=2.56,即(x )=2.56 22333

x =〒1.6,即x =1.6,x =-1.6

222

(1 x

方程的根为x1=10%,x2=-3.1

因为增长率为正数,

所以该公司二、三月份营业额平均增长率为10%。 五、归纳小结

本节课应掌握: 由应用直接开平方法解形如x=p(p≥0),那么x=

解形如(mx n)=p(p≥0),那么mx n=

六、布臵作业

1、教材 复习巩固1、2.

第4课时 22.2.1 配方法(1)

间接即通过变形运用开平方法降次解方程。 教学目标

5

2

2

p0则方程无解

2023年二次医保申请书怎么写二

尊敬的各位领导、各位党员、积极分子、以及应邀前来的各位党外人士:

大家上午好!很高兴能在中国共产党诞生89周年之际,参加咱公司的关于“二次创业我干什么”的演讲活动。这是我有生以来第三次参加演讲活动,但演讲内容与我本人息息相关的就只有这次。

谈到创业这个词,我想我们并不陌生,“创业”顾名思义、就是要开创

一番事业。需要有开拓进取的精神和创新意识、需要有摸着石头过河的勇气和劈荆斩棘的魄力。集团已经成功的经历了第一次创业,现在正着力于二次创业。

在展开二次创业我们干什么、怎么干的话题之前,有必要先了解一下什么是二次创业?企业为什么要二次创业?我查了一下互联网,上面给出了一段话:说创业过程有两大阶段,生存创业与生态创业。第一次创业是生存创业,第二次创业是生态创业。一个企业在经历了一次创业之后,本身已经具备了较强的实力,按照事物发展的客观规律,如果没有一种变革,那么企业一定会衰亡。要想让企业继续发展下去,实现更高的目标,只有对企业进行根本性的改造,才有可能让企业在一个新的台阶上重新发展。二次创业,就是企业在取得高速增长之后,为了谋求进一步的发展而进行的内部变革过程。其实质是企业发展到一定阶段所进行的一次战略转型,是企业发展过程中的一次革命性的进一步的发展。

所以说二次创业是企业发展所要经历的必然阶段。我们企业二次创业的目标是要在未来实现千亿万亿元。这个数字是定量化的目标,除此之外,还有定性化的,新聘任了一位总裁,准备进军领域,这是定性化目标。如果把我们企业比成一条船,董事长是船长,那么总裁就应该是这条船的舵手,掌控着船的航向和速度。我们也都在这条船上,那就只有四个字———同舟共济!

我们有一个共同的名字企业人。我们二次创业的主体不是集团这个企业,而是企业人,是人在创业。那么二次创业我们干什么?我们有多少创业激情?要知道创业不会是一帆风顺的,我们在创业路上所接触的好多事物都是新的,会遇到好多疑难问题,打不通这些瓶颈,就无法驶向成功。今天很残酷,明天更残酷,后天很美好,但大多数人会死于明天晚上,见不到后天美好的太阳,因此好多人在创业路上都会遭受失败。这是马云说的,说得有道理。

但说这说那都没用,关键是要透析我们当前和未来可能发生的问题。希望每位人从自我做起,解放思想,拿出创业激情、进入创业状态、形成创业氛围。要不断学习科学文化知识,提高岗位技能,端正树立科学的世界观和人生价值观,这也是党员义务第一条。把党员应尽的义务充分体现在日常工作

二次医保申请书怎么写 医保社保申请书怎么写(7篇)

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?