电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

函数教案

2024-05-264

函数教案(通用13篇)

函数教案 篇1

  1、函数的定义域关于原点对称是函数具有奇偶性的必要条件。

  判断函数的奇偶性有时可以用定义的等价形式: , 。

  2、若函数 既是奇函数又是偶函数,则 恒等于零,这样的函数有无数个。

  3、如果点 是原函数图象上的点,那么点 就是其反函数图象上的点。

  4、反函数的相关性质:

  (1)互为反函数的两个函数具有相同的的单调性,单调区间不一定相同;

  (2)定义域上的单调函数必有反函数;(函数单调只能作为存在反函数的充分条件)

  只有从定义域到值域上一一映射所确定的函数才有反函数。(存在反函数的充要条件)

  (3)奇函数的反函数也是奇函数。偶函数不存在反函数(定义域为单元素集的偶函数除外);

  (4)周期函数不存在反函数;

  (5)若 是连续单调递增函数,则" 与 的图象有公共点" " 的图象与直线 有公共点" "方程 有解";

  (6)若 为增函数,则 与 的图象的交点必在直线 上;

  (7)函数 的图象与函数 的图象关于直线 对称;

  (8)函数 与 的图象关于直线 对称。

  5、两个函数相同,当且仅当它们的定义域和对应法则分别相同。

  6、 对 恒成立 或 其中 。

  7、二次函数的三种表现形式:

  (1)一般式 ;

  (2)顶点式: 其中 为抛物线顶点坐标;

  (3)零点式: 其中 、 为抛物线与 轴两个交点的横坐标。

  8、不等式中的恒成立问题与不等式的有解问题对比:

  (1) 在 的定义域上恒成立 ;

  (2) 在 的定义域上恒成立 ;

  (3) 在 的定义域上有解 ;

  (4) 在 的定义域上有解 。

  某些恒成立问题有时通过分离变量(在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个为所求,这时可通过恒等变形将两个变量分置于等号或不等号两边)将恒成立问题转化为函数在给定区间上的最值问题,从而求解。

  9、对于函数中的恒成立问题补充两点说明:

  (1)若 恒成立,则m不一定为 的最大值。若 恒成立,则m不一定为 的最小值;

  (2)若 恒成立,则 为的最大值,若 恒成立,则 为的最小值。

  10、函数 的最小值为 。

  11、重要工具函数 的性质:不妨设

  (1) 时,函数在区间 上单调递增;

  (2) 时,函数在区间 上单调递减,在区间 上单调递增。

  12、关于函数对称性,奇偶性与周期性的关系:

  类型之一:线线型 周期性

  (1)若函数 在 上的图象关于直线 与 都对称,则函数 是 上的周期函数, 是它的一个周期。

  (2)若函数 为偶函数,且图象关于直线 对称,则 为周期函数, 是它的一个周期。

  类型之二:点线型 周期性

  (1)若函数 在 上的图象关于点 和直线 都对称,则函数 是 上的周期函数, 是函数 在 上的一个周期。

  (2)若函数 为偶函数,且图象关于点 成中心对称,则函数 为周期函数, 是它的一个周期。

  (3)若函数 为奇函数,且图象关于直线 对称,则 为周期函数, 是它的一个周期。

  类型之三:点点型 周期性

  (1)若函数 在 上的图象关于相异两点 、 都对称,则函数 是 上的周期函数, 是它的一个周期。

  (2)若函数 为奇函数,且图象关于点 成中心对称,则函数 为周期函数, 是它的一个周期。

  13、由函数方程推导函数周期的常见类型:

  (1)若函数 满足 ,则 ,则 是 上的周期函数,且 是它的一个周期。

  (2)若函数 满足 ,则 是 上的周期函数,且 是它的一个周期。

  (3)若对于任意一个实数 ,都有 ,则 是 上的周期函数,且 是它的一个周期。

  (4)若对于任意一个实数 ,都有 ,则 是 上的周期函数,且 是它的一个周期。

  (5)定义在 上的函数 ,若存在非零正实数 ,对于一切 ,都有 ,则 是以 为周期的函数。

  (6)定义在 上的函数 ,若存在非零正实数 ,对于一切 ,都有 ,则 是以 为周期的函数。(过度关系: )

  (7)定义在 上的函数 对于 都有 ,则 是以6为周期的函数。(过度关系:

  (8)定义在 上的函数 对于 都有 ,则 是以6为周期的函数。

  (过度关系: )

  (9)若 是函数 的任意一个周期,则 的相反数 也是 的周期; 也是 的周期;若 都是 的周期,且 ,则 也是 的周期。

  说明:对于(1)~(5),其代换函数,有如下特点:原函数与反函数相同,代换两次能够还原。如: 都是原函数与反函数相同的函数,即 。可见本章-24。

  14、函数图象的自身对称问题:

  (1)偶函数的图象关于y轴对称;(轴对称)

  (2)奇函数的图象关于原点对称;(中心对称)

  (3)定义在 上的函数 ,若满足 ,则函数 的图象关于直线 对称;( ,即:"取平均值",与m的值无关)

  (4)定义在 上的函数 ,若满足 ,则函数 的图象关于点 中心对称;

  (5)定义在 上的函数 ,若满足 (或 ),则函数 的图象关于点 中心对称。

  15、两函数图象间的对称问题:

  (1)定义在 上的函数 与函数 的图象关于直线 对称;(其对称轴方程 由 解得,与m的值有关)

  (2)定义在 上的函数 与函数 的图象关于点 中心对称;

  (3)定义在 上的函数 与函数 的图象关于点 中心对称;

  (4)特别地:①函数 关于x轴对称的函数为:

  ②函数 关于y轴对称的函数为:

  ③函数 关于原点对称的函数为:

  ④函数 关于 对称的函数为:

  ⑤函数 关于 对称的函数为:

  ⑥函数 关于直线 轴对称的函数为: ;

  ⑦函数 关于直线 轴对称的函数为: ;

  ⑧函数 关于点 中心对称的函数为: 。

  16、若函数 为奇函数,且定义域为 ,则必有 。

  若函数 是偶函数,那么 。

  17、基本的函数图象变换:

  (1)要作 的图象,只须将 的图象向上( 时)或向下( 时)

  平移 个单位;

  (2)要作 的图象,只须将 的图象向右( 时)或向左( 时)平移 个单位;

  (3)要作 的图象,可先作函数 的图象,然后将 轴上方部分保持不变, 轴下方部分沿 轴对称上翻即可;

  (4)要作 的图象,只需保留 在 轴右边的图象(擦去 轴左边的图解),然后将 轴右边部分对称地翻折到左侧即可。(注意 是偶函数)。

  (5)要作 的图象,只须将 的图象作关于直线 对称,也可以将 的图象先作关于y轴对称,再向右( 时)或向左( 时)平移 个单位;

  18、对称轴的斜率为 时的对称变换:

  (1)曲线 关于直线 的对称曲线为 ;

  (2)曲线 关于直线 的对称曲线为 ;

  (3)点 关于直线 的对称点为 ;

  (4)点 关于直线 的对称点为 。

  19、函数 按向量 平移后的函数表达式为: ;

  20、判断 符号可以1为分界点,当 在1的同侧( 或 )时, ;当 在1的两侧时, 。可以概括为:"同向为正,异向为负"

  21、关于函数 的定义域为 或值域为 的问题:

  (1)若其定义域为 ,则须 在 上恒成立,问题等价为:

  或 其中 ;

  &nbs

  或 其中 。

  22、当且仅当 时,函数 与函数 的图象相切于直线 上的点 。

  23、一次分式函数 的相关性质:

  (1)定义域: ;

  (2)值域: ;

  (3)图像:双曲线线;

  (4)渐近线: ;

  (5)对称中心: ;

  (6)单调性:①当 , 单调递减, 单调递减;

  ②当 , 单调递增, 单调递增;

  特别地:当 ,即 时,函数 和其反函数 为同一函数。也即函数 的图像关于直线 对称。

  24、用函数方程法求函数解析式应注意的问题

  一般地,形如: ,其中 已知,要求 的解析式,通常的做法为:用 去替代原式中所有的 ,得到 ,若此式中的 ,则可以得到: ,再将此式与原式联立,消掉 ,就可以求出 ,故能用此法求解的关键在于: ,此式说明 必满足,原函数与反函数为同一函数。例如: , , 等。

  25、抽象函数中的相关问题

  (1)奇偶性的判断

  ①若 ( ),则 为奇函数;

  ②若 ( ),则 为奇函数;

  ③若 ( ),则 为偶函数;

  ④若 ( ),则 为奇函数;

  ⑤若 ,则 为偶函数。

  (2)单调性的判断

  ① ;(作差比较函数值)

  ② 。(作差比较函数值)

  26、求函数值域的类型与方法归类

  (1)直接法,直接观察,根据式子的结构特征得出值域。

  (2)配方法,适用于二次型函数: 。

  (3)反函数法,分离x或关于x的表达式,求y的范围,形如: 等形式。

  (4)判别式法,适用于二次分式函数: 。

  (5)均值不等式法,适用于: ,注意一正二定三相等。

  (6)换元法,适用于: ,可令 则 ,转化为二次型。

  三角换元法,含 结构的函数中可 。

  (7)单调法,利用导数求得函数的单调区间和极值,得到值域。

  (8)数形结合法,转化成相应的几何意义,如:距离,斜率,角度等。

  27、 , , , 。

  28、 , ,

函数教案 篇2

  一、教材分析

  幂函数是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。是对函数概念及性质的应用,能进一步培养利用函数的性质(定义域、值域、图像、奇偶性、单调性)研究一个函数的意识。因而本节课更是一个对学生研究函数的方法和能力的综合提升。从概念到图象( ),利用这五个函数的图象探究其定义域、值域、奇偶性、单调性、公共点,概括、归纳幂函数的性质,培养学生从特殊到一般再到特殊的一般认知规律。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,以便能将该方法迁移到对其他函数的研究。

  二、教学目标分析

  依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:

  [知识与技能] 使学生了解幂函数的定义,会画常见幂函数的图象,掌握幂函数的图象和性质,初步学会运用幂函数解决问题,进一步体会数形结合的思想。

  [过程与方法] 引入、剖析、定义幂函数的过程,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法;通过运用多媒体的教学手段,引领学生主动探索幂函数性质,体会学习数学规律的方法,体验成功的乐趣;对幂函数的性质归纳、总结时培养学生抽象概括和识图能力;运用性质解决问题时,进一步强化数形结合思想。

  [情感、态度与价值观] 通过生活实例引出幂函数概念,使学生体会生活中处处有数学,激发学生的学习兴趣。通过本节课的学习,使学生进一步加深研究函数的规律和方法;提高学生的学习能力;养成积极主动,勇于探索,不断创新的学习习惯和品质;树立学科学,爱科学,用科学的精神。

  三、重、难点分析

  [教学重点]

  (1)幂函数的定义与性质;

  (2)指数α的变化对幂函数y=xα(α∈R)的影响。从知识体系看,前面有指数函数与对数函数的学习,后面有其他函数的研究,本节课的学习具有承上启下的作用;就知识特点而言,蕴涵丰富的数学思想方法;就能力培养来说,通过学生对幂函数性质的归纳,可培养学生类比、归纳概括能力,运用数学语言交流表达的能力。

  [教学难点]

  (1)指数α的变化对幂函数y=xα(α∈R)性态的影响。

  (2)数形结合解决大小比较以及求参数的问题。从学生认知发展看,他们具备一定的学习新函数的能力,可以通过学习指数函数与对数函数的方法来类比,但毕竟幂函数在三种初等函数中是最难的,因为它分类的情况很多,且性质多而复杂,我采用让学生自己利用计算机作出函数的图像,从中归纳性质的方法来突破难点。

  四、学情与教法分析

  1. 学情分析

  从学生思维特点来和认知结构看,前面学生已经学习指数函数与对数函数,对新函数的学习已经有了一定的经验。一方面可以把本节课与前面的指数函数与对数函数进行类比学习,但另一方面本节课分类情况多,性质归纳困难,尤其是三个函数放在一起可能产生混淆。对进入高中半个学期的学生来说,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。

  2. 教法分析

  学生思维活跃,求知欲强,但在思维习惯上还有待教师引导从学生原有的知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题。采用引导发现式的教学方法,充分利用多媒体辅助教学。通过教师点拨,启发学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。

  3.教学构想

  新课标的要求是通过实例,了解y=x, , , , 的图像,了解它们的变化情况。而原数学教学大纲要求掌握幂函数的概念及其图像和性质,在考查掌握函数性质和运用性质解决问题时,所涉及的幂函数f(x)=xα中 α限于在集合{-2,-1,-,,,1,2,3}中取值。新课标无论从内容的容量和难度上都要远低于旧课标。而苏教版的教材严格按照新课标要求处理此部分内容,内容体系均未超出课标要求。所以我们应以新课标为准绳,控制难度与要求。由于本节课的难点在于指数α的变化对幂函数y=xα(α∈R)性态的影响,本身幂函数比较抽象,所以我采用在多媒体教室让学生用Excel来模拟得到图象,再从图象上观察、归纳函数的性质。从心理学上讲,自己经历知识的发生发展过程,印象更深刻,学生容易接受与理解。

  五、教具准备

  教师准备教科书、多媒体课件,在计算机教室。

  六、教学过程

函数教案 篇3

  一、教学目标

  (一)知识教学点

  知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式。

  (二)能力训练点

  通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力。

  (三)学科渗透点

  分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想。

  二、教材分析

  1。重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线方程的内容进行介绍,以激发学生学习这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫。

  2。难点:一次函数与其图象的对应关系、直线方程与直线的对应关系是难点。由于以后还要专门研究曲线与方程,对这一点只需一般介绍就可以了。

  3。疑点:是否有继续研

函数教案

函数教案(通用13篇)函数教案 篇1  1、函数的定义域关于原点对称是函数具有奇偶性的必要条件。  判断函数的奇偶性有时可以用定义的等...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?