数学寒假学习计划
数学寒假学习计划(精选31篇)
数学寒假学习计划 篇1
寒假即将到来,你是否已经为自己做好了规划。充实地过好这个假期,会让你的考研复习有一个质的飞跃,相信领先教育,一定是一个正确的选择。以下是领先教育为20xx考研学子打造的高数复习计划。如果你能按照这个计划做,一定可以达到理想的效果。但是面对一个很实际的问题就是,学生们放假回家了,是否能充分利用好假期,是否真的可以按计划完成学习任务呢?因此领先在寒假期间推出一个“赢”计划之数学集训营,帮助大家以下面的计划作为大纲,结合大量的练习题,科学的测试及讲解,对高等数学进行知识分类,讲授解题技巧。此外,还会提前开始线性代数的导学。
首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。
1 第一阶段复习计划:
复习高数书上册第一章,需要达到以下目标:
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
2第二阶段复习计划:
复习高数书上册第二章1-3节,需达到以下目标:
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
3 第三阶段复习计划:
复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:
1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.
3.掌握用洛必达法则求未定式极限的方法.
4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。
4 第四阶段复习计划
复习高数书上册第四章 第1-3节。需达到以下目标:
1.理解原函数的概念,理解不定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。
本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。
5 第五阶段复习计划
复习高数书上册第五章第1-3节。达到以下目标:
1.理解定积分的几何意义。
2.掌握定积分的性质及定积分中值定理。
3.掌握定积分换元积分法与定积分广义换元法.
本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。
6 第六阶段复习计划
复习高数书上册第五章第4节,第六章第2节。达到以下目标:
1.掌握积分上限的函数,会求它的`导数,掌握牛顿-莱布尼茨公式.
2.掌握定积分换元法与定积分广义换元法. 会求分段函数的定积分。
3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。
本周主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。
数学寒假学习计划 篇2
一部分同学能够在初二继续保持领先,最后成为中考中的胜利者;而另一部分同学却慢慢的被拉开差距,学习兴趣和自信心受到双重打击,对于理科学习感到越来越恐惧。
学而思初中学科对于西城某重点中学的两个初三班级同学的成绩进行了分析,如下表,初一的时候大家的成绩比较集中,分数达到优秀(90分)的占80%以上,成绩最差的也在80分上下;而初二时的优秀率只有50%,有很大一部分同学只能拿到60多分;初三时还能保持优秀的同学不足30%,较差的同学在考试中已经在及格线之下。
二、领先初二下期,寒假是优秀学员的必争之地
根据很多优秀学员的学习经验,我们能够发现一些共性的东西,比如众多优秀的学员都会选择在寒假继续进行学习,从而在春季取得一定的优势。
(1)寒假的复习
寒假充裕的时间,可以利用起来把上半学期中的漏洞进行很好的弥补。如果上班学期整体学习得还不错,那么应该把重点放在三角形全等的证明上,特别是构造全等的题目,随时都不应该放松警惕,最好做到每天练习一道题目,每周做一次方法归纳。因为三角形全等在中考中占据着极其重要的地位,近五年的中考压轴题都以三角形全等和三大几何变换综合的形式呈现出来。如:20xx年北京中考的最后一题(原题如下),就考察到同学利用轴对称的思想来构造全等三角形。这个题目让很多同学在中考时都放弃作答,原因就是全等构造类题目难度可以出得很大。如果没有日积月累的经验,是很难在中考中完成这类题目的。
(2)寒假的预习
对于大多数学生来说,对于下半学期知识的提前学习比对以往知识的复习要更加重要。其原因主要可以分为以下三点:
(1)初二下期大多数学校的进度会加快,要求同学也能提前进行预习;
(2)初二下期的知识难度将进一步加大,寒假学习完初二下学期的重点内容,在学校讲课的时候就可以顺利听懂,在课外就可以进行专题训练,提前攻克期中、期末甚至于中考中的核心难点。
(3)提前学习已经成为北京初中优秀学生心中共同的秘密,而按部就班的跟随学校进度学习的同学就相对落后了。
综合以上的分析,我们便能轻易得出一个结论:要想领先初二下学期乃至初三总复习,今年的寒假必须做好规划,认真学习。
三、寒假期间,应该如何安排数学的学习内容和时间
上文中已经提到,寒假重点应该放在提前学习春季的知识上。而春季的课程中,最重要的知识有三块:一元二次方程、四边形和反比例函数,根据广大同学的学习安排,我们给出了一个25小时的数学学习规划,供同学、家长以及初二数学教师参考。
计划二:不知不觉中,这个说长不长说短不短的寒假又悄无声息的来临了,以前总感觉,放假就是自由了、解放了,可以整天出去玩,不用做作业,更没人催你写作业,所以,一到放寒暑假的时候,我就像一个无人看管的疯猴子一样,整天无所事事,光想着今天该如何玩,明天该去哪……可今年不同,我已经是六年级的学生了,不能让人笑话啊!所以,咱得定一个寒假计划书,让自己的寒假变得丰富多彩起来。
1、树立信心,努力坚持,别放弃,更不可半途而废。早晨合理安排30分钟读一读英语
2、利用上午2节课的时间分别独立完成2科寒假作业
3、中午适当午休
4、和上午一样,利用下午的时间做些寒假作业,但不可一下子贪多。要均衡、科学安排。
5、自由时间可以干一些喜欢的事情,但要控制在半小时的时间里
6、晚饭之前是自由活动的时间,可以看电视等,但要看看新闻。
7、读一些好的小文章,写日记或是读后感,或是精彩的摘抄
8、每天学习时间最少保持在7-8小时(上课时间包括在内)
9、学习时间最好固定在:上午8:30-11:30,下午14:30-17:30;晚上19:30-21:30。
10、既不要睡懒觉,也不要开夜车。
11、制定学习计划,主要是以保证每科的学习时间为主。若在规定的时间内无法完成作业,应赶快根据计划更换到其他的学习科目。千万不要总出现计划总是赶不上变化的局面。
12、晚上学习的最后一个小时为机动,目的是把白天没有解决的问题或没有完成的任务再找补一下。
13、每天至少进行三科的复习,文理分开,擅长/喜欢和厌恶的科目交叉进行。不要前赶或后补作业。完成作业不是目的,根据作业查缺补漏,或翻书再复习一下薄弱环节才是根本。
14、若有自己解决不了的问题,千万不要死抠或置之不理,可以打电话请教一下老师或同学。每日【具体】
7:00起床
7:20洗漱完毕
7:20----7:50
:锻炼【跑步,爬山等】
8:00吃早饭
8:20---9:05做作业【第一节课】
9:15—10:00做作业【第二节课】(可以利用第一、二节课时间上家教课)
10:10---10:55复习【第一科】
11:05---11:50阅读【包括语文课外必读篇目,优美散文,作文范文等】
12:00吃午饭
12:30---13:30午休【午睡,实在睡不着的话休息会】
13:40—14:25做作业【第三节课】
14:35---15:20复习【第二科】
---------半小时自由时间【阅读,体育活动,或娱乐】---------------------------
15:50---16:35做题【做数学题,物理,化学题】(单周)【英语训练→完形填空,阅读理解等】(双周)
16:45---吃晚饭自由时间【看报纸,电视→新闻、科普类等】(此段时间不固定)
吃完饭后---21.:30进行一天的总结,检查背诵、默写等签字类作业,并背单词或古诗古文等
10:00睡觉
注:每科做作业的时间为45分钟,应高效的完成该科作业,像考试一样,若为试卷类作业,则按照试卷规定时间完成。
数学寒假学习计划 篇3
(一)制定合理学习计划,及时检查落实。
1.制定符合自己的实际情况的学习计划。
2、要有明确的学习目标。
通过一个阶段的学习,要达到什么水平,掌握那些知识等,这 些都是在制定学习计划前应该非常明确。
3、长期目标和短期安排要相互结合好。应先制定长期计划,据此确定短期学习安排,来 促使长期学习计划的实现。学期计划,半期计划,月计划,周计划。
4、 要合理安排计划。 计划不能太古板, 可根据执行过程中出现的新情况及时做适当调整。
5、措施落实要有力。可附带制定计划落实情况的自我检查表,以便监督自己如期完成学 习目标。
(二)做好课前预习,提高听课效率。
通过预习,了解要学习的课程的主要内容和重、难点,预习的任务是通过初步阅读,先 理解感知新课的内容(如概念、定义、公式、论证方法等) ,为顺利听懂新课扫除障碍。
1、预习的最佳时间是晚上的 8:00 到 9:00 这一段时间,单科的预习的时间一般控制 在 15 分钟到 30 分钟左右。
2、课前预习:先看书做到:一、粗读,先粗略浏览教材的有关内容,了解本节知识的 概貌也就是大体内容。二、细读,对重要概念、公式、 法则、定理反复阅读、体会、思考, 注意该知识的形成过程,了解课程的内容的重、难点,新旧知识的联系及新知识在学科体系 中的地位与意义,对难以理解的概念作出记号,以便带着疑问去听课,而后再做练习,通过 练习来检查自己的预习时掌握的情况,最后再带着自己不懂的问题去听课。
数学寒假学习计划 篇4
期末考完之后能做什么?这是每个学生和家长都想问的问题。每次大考,总是会给学生带来很大的触动,很多人开始懂得了要好好学习,很多人通过考试发现了自己的不足,大多数人只有在这个时候才显得认识很“深刻”。而寒假恰好是一个查漏补缺的最佳时机。高三上半学期结束之后,多数学校高中阶段的数学知识就已经全部学完,并且进行了第一轮的复习,有的学校甚至开始第二轮复习。
那么,在高中的最后一个寒假,高考生应如何做好数学这一重要科目的复习呢?
对于今年高考数学科目的难易程度,整套考卷的难易比例分配不会有变化,还是7:2:1,但今年的整体难度可能会比往年大一点儿,因为去年和前年的高考题相对比较简单。20xx年高考试题的难度总体上不会有大的变化,高考试题的策划和设计上同样不会有较大的变化,将继续体现大纲卷向课改卷的平稳过渡。
高三学生的寒假时间虽然比较短,但是同样要制订好学习计划,而且最好针对每一科都有详细的计划。
就数学这一科来说,查漏补缺是最为重要的,寒假的数学复习,要针对每位学生的实际,全面落实考点,构建知识网络,掌握高考数学的知识体系,对没学好的章节内容各个击破,补全补牢不透彻的知识点;再就是学习好各种解题技能技巧,拓展解题思路,理清数学方法在解题中的应用。
复习以往的错题也是寒假数学复习的重要方法。
抽出一点时间,将平时各类大大小小考试的卷子都拿出来,把错误的题目再订正一遍,最好把错题分类整理在一个错题本上。有些同学会觉得麻烦,实际上,当你一道错题整理出来后,你会发现比你匆忙地去做10道题效果更好。高三学生一定要珍惜“错误”,弄清错误的原因。因为只有牢固掌握基础知识、基本方法,才能获得数学学习的通解和通法。而在明确解题思路的错误后,才能真正巩固所学的知识。
高考数学科目中,占比最大的仍然是基础知识。包括优秀学生在内的任何一个学生,其复习质量高低的关键都在于是否切实抓好基础。函数、不等式、数列、三角、立体几何中的空间线面关系、解析几何中的曲线与方程是高中数学的主干知识,也是高考的重点,这些地方有明显漏洞必须首先弥补。抓基础不是把书上的结论看一遍,高三复习仍要强调理解知识的来源及其所蕴含的数学思想、数学方法,把握知识的横纵联系,在理解的基础上实现网络化并牢固熟练地记忆。抓基础离不开做题,要通过解题的思考过程(解题中模糊想法的澄清,不同想法的比较分析)并结合解题研读课本,深入理解基础知识。
做题是很多学生喜欢的复习方法,但是此时不应再盲目做题,需要重质而不是重量。
高考数学考试的一个特点是研究题目就可以获得解题的方法,所以不建议高三学生在寒假期间再做模拟题,而应该在寒假期间对最近几年的真题进行分析研究,总结出一些解题的方法。对于平时数学成绩较好的学生来说,学会总结学习的思维,做到快速解题,把所有的题目固定成一种思维,同时总结出变型的主要原则。对于平时数学成绩不太理想的学生来说,这个时候还是应以课本知识点理解为主,在做历年的真题时,结合课本看哪些方面是没有掌握的,根据题目把课本上涉及的知识点标出来。看看这些知识点在应用的时候有何先决条件,知识点如何反向应用,具体的解题过程中在何处卡壳。
希望高三的学生在计划中订立短期目标与长期目标,短期目标就是每天熟记5至10个常用公式,做5道例题,一套综合卷子等;长期目标则是双基考试、一模考试、二模考试、高考中能取得什么样的进步。
数学寒假学习计划 篇5
1、初中三年有哪些必须知道的变化规律?
通过对历届学生的学习特点分析,发现初中三年有这样三种阶段性特点:初一不分上下、初二两极分化、初三天上地下;中学数学知识分布的整体特点:初一知识点多、初二难点多,初三考点多。
2、为什么说初一下学期是初中两极分化的导火索?
初二的分化,究其原因还是在初一没有打好基础。初一下学期会学习整式乘法和全等三角形,要求孩子掌握代数恒等变换思维和三角全等变换思维。很多孩子很难从数学计算思维过渡到这种抽象的数学变换思维,同时科学中将开始学习主要的物理部分,学习压力增大,这些困难不能有效克服,势必导致两极分化。
3、初一孩子如何继续保持领先优势?
这个寒假是初中学习的重要时期,原因有三点,第一、就是时间相对集中,学生有充分的时间复习上学期重点知识和预习下学期的重点知识;第二、相对于平时在学校的压力,学生心理方面承受的压力要小很多,这更有助于学习兴趣的提高;第三,打好坚实的数学基础,可以减轻春季数学学习的压力,便于全面学好中学课程。
寒假学习注意事项:
1、复习:
从看着书本思考到合上书本回忆,务必做到所有知识深深印在脑海中,并形成网络框架。
2、预习:
自学+报个合适的辅导班,务必要做到全面。心态一定要调整到就像在学校上课一样。
总之,中考的总知识量是一样的,谁尽量先学并且掌握的扎实,谁就能领先中考。
各位同学,利用好这个寒假,加油!
数学寒假学习计划 篇6
寒假来临,我想更多孩子并不能如愿的彻底放松,特别是针对那些将要中考、高考的学生们,在不久的几个月就该面临一次很重要的升学考试了。有些学生已经去参加各种各样的补习班了,但也有些学生不愿意出门,坚持要在家自己复习。形式不重要,重要的是成效!
经常在论坛里看到很多初三的学生为了学数学而苦恼的不行,对于马上要来的中考也是心怀恐惧。那么,利用寒假的时间,好好查漏补缺一下吧!
第一调整对数学的认识和看法。
多半不喜欢数学的人并不是真的不能学好数学,而是对数学有个错误的认识。有些人觉得学数学有什么用?有人觉得数学就是“筛子”,在上面(学好的人)就聪明,下面都是智商不高,进而自暴自弃。其实,数学是最基本的一门学问,大部分人都是可以学好的,只是欠缺一些对它正确的认识和有效的学习方法。下面就来介绍:
第二整理基本的公式和概念。
这点我们都清楚,关键是如何做。如果大家有时间可以从初一开始整理课本上的概念、公式,但是一定要坚持,很多人都开始信誓旦旦,但中途都废掉了,想起的时候又重新开始,这点要切忌!还有一种方法就是从初三开始整理,看到不懂的就画下来,再查看以前是否有讲过相关的内容,最重要就是理解,找出之间的联系!然后把这些整理好的都记到本子上,随时查阅!
第三开始做题,建立一个错题本。
做题也不是随便看到练习册就做,先要做书本的题,然后是配套的课后练习册的题,把这些题都做的差不多后,再来做老师发给的模拟题。每次做的时候也要控制时间,不会就先放下,留有专门的时间处理这些不会的题。整理做错的题,找出其中的原因,对于实在不会做的题,可以邀朋友来一起解决。
第四遇到问题要自己认真思考,实在不会再求救
在专门解决不会的问题时,先要自己认真思考,尝试自己解决。这样做的好处就是也许你有能力解决,等你真的做出一道难题时,欣喜若狂的感觉会另你更加爱数学的!
第五要根据自己的感觉来安排学数学的时间
寒假毕竟是放松的时间,在制定学习计划的时候可以适当放松,不要把一天的时间安排的满满的,没有喘息的机会。最好可以把数学放到你住状态比较好的时间,感觉累的时候就出去散步、玩耍一下。其实,学数学没有我们想象中那般不可高攀,但也绝非简单的几天达到很好的成绩,重要的坚持、用心。最后,祝愿所有初三的学生们都能学好数学,迎接自己崭新的一天!
数学寒假学习计划 篇7
1 第一阶段复习计划:
复习高数书上册第一章,需要达到以下目标:
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
2第二阶段复习计划:
复习高数书上册第二章1-3节,需达到以下目标:
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
3 第三阶段复习计划:
复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:
1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.
3.掌握用洛必达法则求未定式极限的方法.
4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则
数学寒假学习计划
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。