电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

有理数的加法

2024-06-053

有理数的加法(精选15篇)

有理数的加法 篇1

  教学案例一、设计思路借助生活中熟悉的例子“数轴”比赛中的加减分,使学生着先理解(+1)+(-1)=0和(-1)+(+1)=0,然后利用正负抵消的思路,讨论整理加法的几种情形,并借助数轴加深理解后由特例归纳出法则。二、教学目标 1.经历探索有理数加法法则和运算法则和运算律的过程理解法则和运算律。2.能熟练进行整理加法运算,并能用运算律简化运算。三、教学重点和难点重点:能熟练的进行整数加法运算法则。难点:理解法则和运算律。四、教学过程 1、创设情境,引入课题(1)举出比赛中加减计分的例子板书:有理数加法(2)师生互动,探索规律出示题目:31+76+69问题:小学的加法交换律的内容,能否利用它来解答有理数加法的题目呢?出示例2:31+(-28)+28+29请两位同学上黑板,一位同学用加法法则计算,一位同学用加法交换律计算,其余学生自己动手解答,互相交流。2、总结规律,得出结论运用加法结合律可以使有理数运算简化,由此得出,小学的加法结合律、交换律对于有理数同样是适用的。3、  示例3、学生板演,强调使用交换律、结合律4、  课堂练习: ①(-25)+(-7)+25             ②2+[(-3)+(-8)]③43+(-77)+27+(-43)由学生完成,教师指导5、  课堂小结①这节课你学会了一种什么运算?②你有何体会?6、  作业 :五、教学反思:这节课我为学生创造了思考、交流的机会,使学生合作交流。但计算中个别学生仍有漏符号的问题。

有理数的加法 篇2

  教学目标1,经历有理数加法运算律的探索过程,理解有理数加法的运算律.2,能用运算律简化有理数加法的运算.3,使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力.

  教学难点合理运用运算律

  知识重点加法交换律和结合律,及其合理、灵活的运用

  教学过程(师生活动)

  设计理念

  设置情境

  引入课题回顾复习:小学时已学过的加法运算律有哪几条?学生回答后教师接着问:你能用自己的语言或举例子来说明一下加法的交换律与结合律吗?提出问题:这些运算律在有理数加法中适用吗?这就是这节课我们要研究的课题.

  分析问题

  探究新知探讨加法运算律在有理数范围内是否适用.    1,有理数加法交换律的学习.    问题1:我们如何知道加法交换律在有理数范围内是否适用?(先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证)    问题2:我们如何用语言来叙述有理数加法的交换律呢?(这个问题请学生回答,并互相补充)    教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变.”    问题3 :你能把有理数加法的交换律用字母来表示吗?由学生回答得出a+b=b+a后,教师说明:〔1〕式子中的字母分别表示任意的一个有理数.(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。(2)在同一个式子中,同一个字母表示同一个数.2,有理数加法结合律的学习. (基本步骤同于加法交换律的学习)“加法运算律对所有有理数都成立”目前只能直接给出,让学生举例尝试只起到验证的作用.要让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论.鼓动学生用自己的语言表达所发现的贻论或规律.    让学生感受字母表示数的含义,同时也让学生体会到数学符号语言的简洁性.

  讨论交流

  解决问题思考:如果四个或四个以上的有理数相加时,还能使用加法交换律与结合律吗?与同伴交流你的看法,并举例子来说明你的观点.例1计算:(1)16+(-25)十24+(-35);(2)(-2.48)+(+4.33)+(-7.52)+(-4.33). 师生共同分析完成,如第(1)题,教师板书:解:(1)原式=16+24+ (-25)十(-35)(此时教师问:依据是什么?)        =(16+24)+[(-25)+(-35)〕(依据是什么?)        =40+(一60)        =20解题后反思:先让学生按从左到右的顺序依次相加,算一算,再让学生说一说,通过这两道题目的计算,你有什么体会?(使用运算律能使运算简便,简化运算的方法有:把正数和负数分别相加,有相反毅的先把相反数相加,能凑整的先凑整等等).例2教科书第24页例4. 这题可这样处理:i1,让学生估计一下总重量是超过标准重量还是不足标准重量.2,让学生思考如何计算,学生能给教科书提供的解法1.即先10袋小麦的总质量,再计算总计超过多千克。此时可组织学生讨论:有没有不同的解法?(此时,如果已有学生提出教材的解法2的思路,则请学生讨论这种解法的合理性。并比较这两种解法。(这是一个有理数应用的例子,这两种解法都应让学生掌握,尤其是解法2更是体现学习有理数加法运算的必要性。注重学习小组内的合作与交流,让每个学生都能从与同伴的交流中获益。鼓励学生在已有知识的基础上对结论做进一步探索,同时也为接下去的应用打下基础。强调算理,让学生在具体运算中体会运算律对简化运算的作用。通过例1的学习让学生明白:加法的交换律与结合律通常是结合起来使用的。此处与书本相对增加了一道题,主要是考虑到存在互为相反数的两数相加的简便性。也是培养学业生能力的需要。

  课堂练习教科书第25页练习

  本课作业必做题:第31页习题3.1第2、9、10阅读教科书第25页“实验与探究”有兴趣的可完成幻方。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)   1,本节课在开始时就先复习小学时学的加法运算律,然后提出一个富有启发性且具有探索意义的问题:“我们如何知道加法的交换律在有理数范围内是否适用?’’然后让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.(在小学、中学阶段,对运算律都不介绍证明方法,只结合具体例子做些脸证).   2,注重学生学习方式的改变,提倡小组合作交流,让每个学生都在与同伴的交流中获益,同时也注重师生之间的交流对话,教师适时引导.  3,重视数感的培养.学生数感的养成不是一朝一夕能达成的,在教学中应充分挖掘学生能力的生长点,数感也是如此,例2中在计算之前让学生估算之意就在于此.  4,有理数的运算,既要注意减少一些繁、难的练习题,又要注意掌握有理数的运算需要一定量的练习.更要强调的是算理,要求学生能说出每一步计算的依据.  5,例1解题后的反思,例2多样化解法的比较,设计意图在于培养学生良好的学习习惯。附板书:                        1.3.1 有理数的加法(二)

有理数的加法 篇3

  教学目标 

  1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;

  2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;

  3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;

  4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

  教学建议

  (一)重点、难点分析

  本节教学的重点是依据法则熟练进行运算。难点是法则的理解。

  (1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

  (2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

  (3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。

  (二)知识结构

  (三)教法建议

  1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

  2.法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

  3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。

  4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

  5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

  6.在探讨导出法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

  教学设计示例

  (第一课时)

  教学目的

  1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行运算.

  2.通过运算,培养学生的运算能力.

  教学重点与难点

  重点:熟练应用法则进行加法运算.

  难点:法则的理解.

  教学过程 

  (一)复习提问

  1.有理数是怎么分类的?

  2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

  3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

  -3与-2;|3|与|-3|;|-3|与0;

  -2与|+1|;-|+4|与|-3|.

  (二)引入新课

  在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学运算.

  (三)进行新课 (板书课题)

  例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

  两次行走后距原点0为8米,应该用加法.

  为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

  1.同号两数相加

  (1)某人向东走5米,再向东走3米,两次一共走了多少米?

  这是求两次行走的路程的和.

  5+3=8

  用数轴表示如图

  从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

  可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

  (2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

  显然,两次一共向西走了8米

  (-5)+(-3)=-8

  用数轴表示如图

  从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

  可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

  总之,同号两数相加,取相同的符号,并把绝对值相加.

  例如,(-4)+(-5),……同号两数相加

  (-4)+(-5)=-( ),…取相同的符号

  4+5=9……把绝对值相加

  ∴ (-4)+(-5)=-9.

  口答练习:

  (1)举例说明算式7+9的实际意义?

  (2)(-20)+(-13)=?

  (3)

  2.异号两数相加

  (1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

  5+(-5)=0

  可知,互为相反数的两个数相加,和为零.

  (2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

  就是 5+(-3)=2.

  (3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

  就是 3+(-5)=-2.

  请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

  最后归纳

  绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

  例如(-8)+5……绝对值不相等的异号两数相加

  8>5

  (-8)+5=-( )……取绝对值较大的加数符号

  8-5=3 ……用较大的绝对值减去较小的绝对值

  ∴(-8)+5=-3.

  口答练习

  用算式表示:温度由-4℃上升7℃,达到什么温度.

  (-4)+7=3(℃)

  3.一个数和零相加

  (1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

  显然,5+0=5.结果向东走了5米.

  (2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

  容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

  请同学们把(1)、(2)画出图来

  由(1),(2)得出:一个数同0相加,仍得这个数.

  总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

  有理数加法运算的三种情况:

  特例:两个互为相反数相加;

  (3)一个数和零相加.

  每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.

  (四)例题分析

  例1 计算(-3)+(-9).

  分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

  解:(-3)+(-9)=-12.

  例2

  分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”)

  解:

  解题时,先确定和的符号,后计算和的绝对值.

  (五)巩固练习

  1.计算(口答)

  (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

  (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

  2.计算

  (1)5+(-22); (2)(-1.3)+(-8)

  (3)(-0.9)+1.5; (4)2.7+(-3.5)

  探究活动

  题目 (1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;

  (2)在1,2,3,…,11,12十二个数的前面添加正号或负号,使它们的和为零;

  (3)在1,2,3,4,…,99,100一百个数的前面添加正号或负号,使它们的和为0;

  (4) 在解决这个问题的过程中,你能总结出一些什么数学规律?

  参考答案  我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.

  现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答:

  (1)得+1变为-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①

  (2)将(+6-5)变为-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②

  又如,在11,10,8,7,5这五个数的前面添加负号,得

  12-11-10-9-8-7+6-5+4+3+2+1=-4,

  我们就有多种调整的方法,如将-8与+6变号,有

  12-11-10+9+8-7-6-5+4+3+2+1=0. ③

  经过几次试验,我们发现了规律:欲使十二个数的和为零,其中正数的和的绝对值与负数的和的绝对值必须相等.但

  1+2+3+4+5+6+7+8+9+10+11+12=78

  因此我们应该使各正数的和的绝对值与各负数的和的绝对值均为

  为了简便起见,我们把①式所表示的一个解答记为(12,11,10,5,1),那么②,③两式所表示的解答就分别记为(12,11,10,6)与(11,10,7,6,5).

  同时我们还发现:如果(12,11,10,5,1)是一个解答,那么(9,8,7,6,4,3,2)也必定是一个解答.同样,对应于②,③两式,还分别有另两个解答:(9,8,7,5,4,3,2,1)与(12,9,8,4,3,2,1).这个规律我们不妨叫做对偶律.

  此外我们还可发现,由于最大的三个数12,11,10其和33<39,因此必须再增加一个数6,才有解答(12,11,10,6),也就是说:添加负号的数至少要有四个;反过来,根据对偶律得:添加负号的数最多不超过八个.

  掌握了上述几条规律,我们就能够在很短的时间内得到许多解答.最后让我们告诉你,第(2)问的解答个数并非无数多,其总数是124个.

有理数的加法 篇4

  教学目标

  1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;

  2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;

  3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;

  4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

  教学建议

  (一)重点、难点分析

  本节教学的重点是依据法则熟练进行运算。难点是法则的理解。

  (1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

  (2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

  (3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。

  (二)知识结构

  (三)教法建议

  1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

  2.法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

  3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。

  4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

  5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

  6.在探讨导出法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

  教学设计示例

  (第一课时)

  教学目的

  1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行运算.

  2.通过运算,培养学生的运算能力.

  教学重点与难点

  重点:熟练应用法则进行加法运算.

  难点:法则的理解.

  教学过程

  (一)复习提问

  1.有理数是怎么分类的?

  2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

  3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

  -3与-2;|3|与|-3|;|-3|与0;

  -2与|+1|;-|+4|与|-3|.

  (二)引入新课

  在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学运算.

  (三)进行新课 (板书课题)

  例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

  两次行走后距原点0为8米,应该用加法.

  为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

  1.同号两数相加

  (1)某人向东走5米,再向东走3米,两次一共走了多少米?

  这是求两次行走的路程的和.

  5+3=8

  用数轴表示如图

  从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

  可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

  (2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

  显然,两次一共向西走了8米

  (-5)+(-3)=-8

  用数轴表示如图

  从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

  可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

  总之,同号两数相加,取相同的符号,并把绝对值相加.

  例如,(-4)+(-5),……同号两数相加

  (-4)+(-5)=-( ),…取相同的符号

  4+5=9……把绝对值相加

  ∴ (-4)+(-5)=-9.

  口答练习:

  (1)举例说明算式7+9的实际意义?

  (2)(-20)+(-13)=?

  (3)

  2.异号两数相加

  (1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

  5+(-5)=0

  可知,互为相反数的两个数相加,和为零.

  (2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

  就是 5+(-3)=2.

  (3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

  就是 3+(-5)=-2.

  请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

  最后归纳

  绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

  例如(-8)+5……绝对值不相等的异号两数相加

  8>5

  (-8)+5=-( )……取绝对值较大的加数符号

  8-5=3 ……用较大的绝对值减去较小的绝对值

  ∴(-8)+5=-3.

  口答练习

  用算式表示:温度由-4℃上升7℃,达到什么温度.

  (-4)+7=3(℃)

  3.一个数和零相加

  (1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

  显然,5+0=5.结果向东走了5米.

  (2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

  容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

  请同学们把(1)、(2)画出图来

  由(1),(2)得出:一个数同0相加,仍得这个数.

  总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

  有理数加法运算的三种情况:

  特例:两个互为相反数相加;

  (3)一个数和零相加.

  每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.

  (四)例题分析

  例1 计算(-3)+(-9).

  分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

  解:(-3)+(-9)=-12.

  例2

  分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”)

  解:

  解题时,先确定和的符号,后计算和的绝对值.

  (五)巩固练习

  1.计算(口答)

  (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

  (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

  2.计算

  (1)5+(-22); (2)(-1.3)+(-8)

  (3)(-0.9)+1.5; (4)2.7+(-3.5)

  探究活动

  题目 (1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;

  (2)在1,2,3,…,11,12十二个数的前面添加正号或负号,使它们的和为零;

  (3)在1,2,3,4,…,99,100一百个数的前面添加正号或负号,使它们的和为0;

  (4) 在解决这个问题的过程中,你能总结出一些什么数学规律?

  参考答案  我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.

  现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答:

  (1)得+1变为-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①

  (2)将(+6-5)变为-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②

  又如,在11,10,8,7,5这五个数的前面添加负号,得

  12-11-10-9-8-7+6-5+4+3+2+1=-4,

  我们就有多种调整的方法,如将-8与+6变号,有

  12-11-10+9+8-7-6-5+4+3+2+1=0. ③

  经过几次试验,我们发现了规律:欲使十二个数的和为零,其中正数的和的绝对值与负数的和的绝对值必须相等.但

  1+2+3+4+5+6+7+8+9+10+11+12=78

  因此我们应该使各正数的和的绝对值与各负数的和的绝对值均为

  为了简便起见,我们把①式所表示的一个解答记为(12,11,10,5,1),那么②,③两式所表示的解答就分别记为(12,11,10,6)与(11,10,7,6,5).

  同时我们还发现:如果(12,11,10,5,1)是一个解答,那么(9,8,7,6,4,3,2)也必定是一个解答.同样,对应于②,③两式,还分别有另两个解答:(9,8,7,5,4,3,2,1)与(12,9,8,4,3,2,1).这个规律我们不妨叫做对偶律.

  此外我们还可发现,由于最大的三个数12,11,10其和33<39,因此必须再增加一个数6,才有解答(12,11,10,6),也就是说:添加负号的数至少要有四个;反过来,根据对偶律得:添加负号的数最多不超过八个.

  掌握了上述几条规律,我们就能够在很短的时间内得到许多解答.最后让我们告诉你,第(2)问的解答个数并非无数多,其总数是124个.

有理数的加法 篇5

  2.4 有理数的加法(1)

  江苏省溧阳市南渡初级中学 陈建芳

  (邮编:213371;联系电话:806)

  教学目标:

  1、 知道有理数加法的意义和法则

  2、 会用有理数加法法则正确地进行有理数的加法运算

  3、 经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法

  教学重点: 有理数加法则的探索及运用

  教学难点: 异号两数相加的法则的理解及运用

  教学过程:

  一、 创设情境

  展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗?

  (学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)

  二、 探求新知

  1、甲、乙两队进行足球比赛,

  (1)、如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球?

  (2)、如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球?

  足球比赛中赢球个数与输球个数是一对相反意义的量.若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗?

  (学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教师板书。)

  (3)、除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗?

  (引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)= 0,0+0=0 )

  2、你能举出一些运用有理数加法的实际例子吗?

  (学生列举实例并根据具体意义写出算式)

  3、学生活动:

  (1)、把笔尖放在数轴原点处,先向正方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?

  (2)、把笔尖放在数轴原点个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表

有理数的加法

有理数的加法(精选15篇)有理数的加法 篇1  教学案例一、设计思路借助生活中熟悉的例子“数轴”比赛中的加减分,使学生着先理解(+1)...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?