《1.1二次函数》教学设计
《1.1二次函数》教学设计(精选8篇)
《1.1二次函数》教学设计 篇1
教材分析
本节课主要内容包括:运用二次函数的最大值解决最大面积的问题,让学生体会抛物线的顶点就是二次函数图象的最高点(最低点),因此,可利用顶点坐标求实际问题中的最大值(或最小值).在最大利润这个问题中,应用顶点坐标求最大利润,是较难的实际问题。
本节课的设计是从生活实例入手,让学生体会在解决问题的过程中获取知识的快乐,使学生成为课堂的主人。
按照新课程理念,结合本节课的具体内容,本节课的教学目标确定为相互关联的三个层次:
1、知识与技能
通过实际问题与二次函数关系的探究,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。
2、过程与方法
通过对实际问题的研究,体会数学知识的现实意义。进一步认识如何利用二次函数的有关知识解决实际问题。渗透转化及分类的数学思想方法。
3、情感态度价值观
(1)通过巧妙的教学设计,激发学生的学习兴趣,让学生感受数学的美感。
(2)在知识教学中体会数学知识的应用价值。
本节课的教学重点是 “探究利用二次函数的最大值(或最小值)解决实际问题的方法”,教学难点是“如何将实际问题转化为二次函数的问题”。
实验研究:
作为一线教师,应该灵活地处理和使用教材。充分发挥教师自己的智慧,把学生置于教学的出发点和核心地位,应学生而动,应情境而变,课堂才能焕发勃勃生机,课堂上才能显现真正的活力。因此我对教材进行了重新开发,从学生熟悉的生活情境出发,与学生生活背景有密切相关的学习素材来构建学生学习的内容体系。把握好以下两方面内容:
(一)、利用二次函数解决实际问题的易错点:
①题意不清,信息处理不当。
②选用哪种函数模型解题,判断不清。
③忽视取值范围的确定,忽视图象的正确画法。
④将实际问题转化为数学问题,对学生要求较高,一般学生不易达到。
(二)、解决问题的突破点:
①反复读题,理解清楚题意,对模糊的信息要反复比较。
②加强对实际问题的分析,加强对几何关系的探求,提高自己的分析能力。
③注意实际问题对自变量 取值范围的影响,进而对函数图象的影响。
④注意检验,养成良好的解题习惯。
因此我由课本的一个问题转化为两个实际问题入手通过创设情境,层层设问,启发学生自主学习。
教学目标
1.知识与能力:初步掌握解决二次函数在闭区间上最值问题的一般解法,总结归纳出二次函数在闭区间上最值的一般规律,学会运用二次函数在闭区间上的图像研究和理解相关问题。
2.过程与方法:通过实验,观察影响二次函数在闭区间上的最值的因素,在此基础上讨论探究出解决二次函数在闭区间上最值问题的一般解法和规律。
3.情感、态度与价值观:通过探究,让学生体会分类讨论思想与数形结合思想在解决数学问题中的重要作用,培养学生分析问题、解决问题的能力,同时培养学生合作与交流的能力。
教学重点与难点
教学重点:寻求二次函数在闭区间上最值问题的一般解法和规律。
教学难点:含参二次函数在闭区间上的最值的求法以及分类讨论思想的正确运用。
学生学情分析
我所代班级的学生是高一新生, 他们在初中已学过二次函数的简单性质与图像,知道二次函数在 二次函数最值教学设计时在顶点处取得最大值或最小值,在前几节课又学习了函数的概念与表示、单调性与最值的相关知识,已经具备了本节课学习必须的基础知识。
教法分析
根据教学实际,我将本节课设计为数学探究课,在探究的过程中,借助于多媒体教学手段,让学生观察几何画板中的动态演示,通过对二次函数图像的“再认识”,探究二次函数在闭区间上的最值。同时为了配合多媒体的教学,准备了学案让学生配套使用。先让学生提前预习相关内容,对所要探究的问题有初步的了解,再在课堂上详细的探究,课后在学案上有相应的课后作业题让学生巩固所学知识。
教学过程
(一)复习旧知
回忆二次函数的图像与性质:
1. 图像:
2. 定义域:
3. 单调性:
4. 最值:
【设计意图】复习旧知,引入新课。
(二)自主探究
探究1:定轴定区间最值问题
分别在下列范围内求函数f(x)=x2-2x-3的最值:
规律总结:作出二次函数的图像,通过图像确定函数在给定区间上的最值。
【设计意图】
通过探究
1,让学生讨论探究定函数在定区间上最值的求解方法,并通过二次函数在闭区间上图像直观形象地观察、分析问题和解决问题。
(三)合作探究(含参二次函数最值求解问题 )
探究2:动轴定区间最值问题
求函数f(x)=x2-2tx-3, t∈R在x∈[-2,2]上的最小值。
【设计意图】
通过探究2,让学生讨论探究动轴定区间上最小值的求解方法,并通过动态演示二次函数在闭区间上的图像,让学生直观形象地观察、分析问题和解决问题。
变式训练:求函数f(x)=x2-2tx-3在x∈[-2,2] ,t∈R上的最大值。
【设计意图】
通过变式训练,让学生进一步体会动轴定区间上最大值的求解方法,同时归纳出动轴定区间最值问题求解的一般规律。
规律总结:移动对称轴,比较对称轴和区间的位置关系,再结合图像进行进行分类讨论,
注意做到“不重不漏”。
探究3:定轴动区间最值问题
求函数f(x)=x2-2x-3在x∈[t,t+2],t∈R的最小值。
【设计意图】让学生分组讨论探究3的求解方法,使学生体会运动的相对性,从而类比探究2的过程与方法可以制定出解决问题3的方法。
变式训练:求函数f(x)=-x2+2x-3在x∈[t,t+2], t∈R的最大值.
【设计意图】
通过变式训练,让学生进一步体会定轴动区间上最大值的求解方法,同时归纳出定轴动区间最值问题求解的一般规律。
规律总结:移动区间,比较对称轴和区间的位置关系,再结合图像进行分类讨论,注意做到“不重不漏”。
(四)知识小结
本节课研究了二次函数的三类最值问题:
(1) 定轴定区间最值问题;
(2) 动轴定区间最值问题;
(3) 定轴动区间最值问题.
核心思想是判断对称轴与区间的相对位置, 应用数形结合、分类讨论思想求出最值。
【设计意图】
归纳总结二次函数问题在闭区间上最值的一般解法和规律,完成本节课知识的建构。
(五)结束语
数缺形时少直观,形少数时难入微.数形结合百般好,割裂分家万事休!
(六)课后作业
1.二次函数最值教学设计1.分别在下列范围内求二次函数f(x)=x2+4x-6的最值。
2. 求函数f(x)=x2+2tx+2,t∈R在x∈[-5,5]上的最值。
3. 求函数f(x)=x2-2x+2在x∈[t,t+1], t∈R的最小值。
【设计意图】
学生应用探究所得知识解决相关问题,进一步巩固和提高二次函数在闭区间上最值的求解方法与规律。
《1.1二次函数》教学设计 篇2
二次函数的教学设计
教学内容:人教版九年义务教育初中第三册第108页
教学目标 :
1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;
2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;
3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
教学重点:二次函数的意义;会画二次函数图象。
教学难点 :描点法画二次函数y=ax2的图象,数与形相互联系。
教学过程 设计:
一. 一. 创设情景、建模引入
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式
答:S=πR2. ①
2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系
答:S=L(30-L)=30L-L2 ②
分析:①②两个关系式中S与R、L之间是否存在函数关系?
S是否是R、L的一次函数?
由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。(板书课题)
二. 二. 归纳抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,
那么,y叫做x的二次函数.
注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.
练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)
(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)
由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)
三. 三. 尝试模仿、巩固提高
让我们先从最简单的二次函数y=ax2入手展开研究
1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?
请同学们画出函数y=x2的图象。
(学生分别画图,教师巡视了解情况。)
2. 2. 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。
解:一、列表:
x
-3
-2
-1
0
1
2
3
Y=x2
9
4
1
0
1
4
9
二、描点、连线: 按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.
对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。
练习:画出函数 ; 的图象(请两个同学板演)
X
-3
-2
-1
0
1
2
3
Y=0.5X2
4.5
2
0.5
0
0.5
02
4.5
Y=-X2
-9
-4
-1
0
-1
-4
-9
画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。
(这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)
三. 三. 运用新知、变式探究
画出函数 y=5x2图象
学生在画图象的过程中遇到函数值较大的困难,不知如何是好。
x
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
Y=5x2
1.25
0.8
0.45
0.2
0.05
0
0.05
0.2
0.45
0.8
1.25
教师出示已画好的图象让学生观察
注意:1. 画图象应描7个左右的点,描的点越多图象越准确。
2. 自变量X的取值应注意关于Y轴对称。
3. 对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。
四. 四. 归纳小结、延续探究
教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:
一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。
五. 五. 回顾反思、总结收获
在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。
(在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。)
《1.1二次函数》教学设计 篇3
二次函数的教学设计
马玉宝
教学内容:人教版九年义务教育初中第三册第108页
教学目标 :
1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;
2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;
3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
教学重点:二次函数的意义;会画二次函数图象。
教学难点 :描点法画二次函数y=ax2的图象,数与形相互联系。
教学过程 设计:
一. 一. 创设情景、建模引入
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式
答:S=πR2. ①
2.写
《1.1二次函数》教学设计
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。