电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

22.2.3 公式法

2024-06-051

22.2.3 公式法(通用15篇)

22.2.3 公式法 篇1

  教学内容

  1.一元二次方程求根公式的推导过程;

  2.公式法的概念;

  3.利用公式法解一元二次方程.

  教学目标

  理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.

  复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程.

  重难点关键

  1.重点:求根公式的推导和公式法的应用.

  2.难点与关键:一元二次方程求根公式法的推导.

  教学过程

  一、复习引入

  (学生活动)用配方法解下列方程

  (1)6x2-7x+1=0   (2)4x2-3x=52

  (老师点评)  (1)移项,得:6x2-7x=-1

  二次项系数化为1,得:x2- x=-

  配方,得:x2- x+( )2=- +( )2

  (x- )2=

  x- =±   x1= + = =1 

  x2=- + = =

  (2)略

  总结用配方法解一元二次方程的步骤(学生总结,老师点评).

  (1)移项;

  (2)化二次项系数为1;

  (3)方程两边都加上一次项系数的一半的平方;

  (4)原方程变形为(x+m)2=n的形式;

  (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.

  二、探索新知

  如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.

  问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1= ,x2=

  分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.

  解:移项,得:ax2+bx=-c

  二次项系数化为1,得x2+ x=-

  配方,得:x2+ x+( )2=- +( )2

  即(x+ )2=

  ∵b2-4ac≥0且4a2>0

  ∴ ≥0

  直接开平方,得:x+ =±

  即x=

  ∴x1= ,x2=

  由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:

  (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x= 就得到方程的根.

  (2)这个式子叫做一元二次方程的求根公式.

  (3)利用求根公式解一元二次方程的方法叫公式法.

  (4)由求根公式可知,一元二次方程最多有两个实数根.

  例1.用公式法解下列方程.

  (1)2x2-4x-1=0          (2)5x+2=3x2

  (3)(x-2)(3x-5)=0   (4)4x2-3x+1=0

  分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.

  解:(1)a=2,b=-4,c=-1

  b2-4ac=(-4)2-4×2×(-1)=24>0

  x=

  ∴x1= ,x2=

  (2)将方程化为一般形式

  3x2-5x-2=0

  a=3,b=-5,c=-2

  b2-4ac=(-5)2-4×3×(-2)=49>0

  x=

  x1=2,x2=-

  (3)将方程化为一般形式

  3x2-11x+9=0

  a=3,b=-11,c=9

  b2-4ac=(-11)2-4×3×9=13>0

  ∴x=

  ∴x1= ,x2=

  (3)a=4,b=-3,c=1

  b2-4ac=(-3)2-4×4×1=-7<0

  因为在实数范围内,负数不能开平方,所以方程无实数根.

  三、应用拓展

  例2.某数学兴趣小组对关于x的方程(m+1) +(m-2)x-1=0提出了下列问题.

  (1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.

  (2)若使方程为一元二次方程m是否存在?若存在,请求出.

  你能解决这个问题吗?

  分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.

  (2)要使它为一元一次方程,必须满足:① 或② 或③

  解:(1)存在.根据题意,得:m2+1=2

  m2=1  m=±1

  当m=1时,m+1=1+1=2≠0

  当m=-1时,m+1=-1+1=0(不合题意,舍去)

  ∴当m=1时,方程为2x2-1-x=0

  a=2,b=-1,c=-1

  b2-4ac=(-1)2-4×2×(-1)=1+8=9

  x=

  x1=,x2=-

  因此,该方程是一元二次方程时,m=1,两根x1=1,x2=- .

  (2)存在.根据题意,得:①m2+1=1,m2=0,m=0

  因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0

  所以m=0满足题意.

  ②当m2+1=0,m不存在.

  ③当m+1=0,即m=-1时,m-2=-3≠0

  所以m=-1也满足题意.

  当m=0时,一元一次方程是x-2x-1=0,

  解得:x=-1

  当m=-1时,一元一次方程是-3x-1=0

  解得x=-

  因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=- .

  四、归纳小结

  本节课应掌握:

  (1)求根公式的概念及其推导过程;

  (2)公式法的概念;

  (3)应用公式法解一元二次方程;

  (4)初步了解一元二次方程根的情况.

  五、作业

  一、选择题

  1.用公式法解方程4x2-12x=3,得到(  ).

  a.x=      b.x=    c.x=      d.x=

  2.方程 x2+4 x+6 =0的根是(  ).

  a.x1= ,x2=      b.x1=6,x2=     c.x1=2 ,x2=      d.x1=x2=-

  3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是(  ).

  a.4     b.-2     c.4或-2     d.-4或2

  二、填空题

  1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.

  2.当x=______时,代数式x2-8x+12的值是-4.

  3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.

  三、综合提高题

  1.用公式法解关于x的方程:x2-2ax-b2+a2=0.

  2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.

  3.某电厂规定:该厂家属区的每户居民一个月用电量不超过a千瓦时,那么这户居民这个月只交10元电费,如果超过a千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.

  (1)若某户2月份用电90千瓦时,超过规定a千瓦时,则超过部分电费为多少元?(用a表示)

  (2)下表是这户居民3月、4月的用电情况和交费情况

  月份

  用电量(千瓦时)

  交电费总金额(元)

  3

  80

  25

  4

  45

  10

  根据上表数据,求电厂规定的a值为多少?

  答案:

      一、1.d  2.d  3.c

  二、1.x= ,b2-4ac≥0   2.4  3.-3

  三、

  1.x= =a±│b│

  2.

  (1)∵x1、x2是ax2+bx+c=0(a≠0)的两根,∴x1= ,x2=

  ∴x1+x2= =- ,x1·x2= · =

  (2)∵x1,x2是ax2+bx+c=0的两根,∴ax12+bx1+c=0,ax22+bx2+c=0

  原式=ax13+bx12+c1x1+ax23+bx22+cx2

  =x1(ax12+bx1+c)+x2(ax22+bx2+c)

  =0

  3.(1)超过部分电费=(90-a)· =- a2+ a (2)依题意,得:(80-a)· =15,a1=30(舍去),a2=50

22.2.3 公式法 篇2

  教学内容:  12.1  用公式解一元二次方程(一)

  教学目标 :

  知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

  过程与方法目标: 1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

  情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。

  教学重、难点与关键:

  重点:一元二次方程的意义及一般形式.

  难点:正确识别一般式中的“项”及“系数”。

  教辅工具:

  教学程序设计:

  程序

  教师活动

  学生活动

  备注

  创设

  问题

  情景

  1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.

  2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?

  教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.

  板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.

  学生看投影并思考问题

  通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.

  探

  究

  新

  知

  1

  1.复习提问

  (1)什么叫做方程?曾学过哪些方程?

  (2)什么叫做一元一次方程?“元”和“次”的含义?

  (3)什么叫做分式方程?

  2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?

  引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.

  整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.

  一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.

  3.练习:指出下列方程,哪些是一元二次方程?

  (1)x(5x-2)=x(x+1)+4x2;

  (2)7x2+6=2x(3x+1);

  (3)

  (4)6x2=x;

  (5)2x2=5y;

  (6)-x2=0

  4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.

  一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.

  一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.

  5.例1  把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?

  教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.

  讨论后回答

  学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,

  独立完成

  加深理解

  学生试解

  问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫

  反馈

  训练

  应用

  提高

  练习1:教材P.5中1,2.

  练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:.

  (4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

  教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.

  要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.

  小结

  提高

  (四)总结、扩展

  引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?

  1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.

  2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.

  3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.

  学生讨论回答

  布置

  作业 

  1.教材P.6 练习2.

  2.思考题:

  1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”

  2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).

  反

  思

22.2.3 公式法 篇3

  教学设计示例

  运用公式法――完全平方公式(1)

  教学目标 

  1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;

  2.理解完全平方式的意义和特点,培养学生的判断能力.

  3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.

  4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

  教学重点和难点

  重点:运用完全平方式分解因式.

  难点:灵活运用完全平方公式公解因式.

  教学过程 设计

  一、复习

  1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

  答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.

  2.把下列各式分解因式:

  (1)ax4-ax2             (2)16m4-n4.

  解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

  (2) 16m4-n4=(4m2)2-(n2)2

  =(4m2+n2)(4m2-n2)

  =(4m2+n2)(2m+n)(2m-n).

  问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

  答:有完全平方公式.

  请写出完全平方公式.

  完全平方公式是:

  (a+b)2=a2+2ab+b2,   (a-b)2=a2-2ab+b2.

  这节课我们就来讨论如何运用完全平方公式把多项式因式分解.

  二、新课

  和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到

  a2+2ab+b2=(a+b)2;    a2-2ab+b2=(a-b)2.

  这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.

  问:具备什么特征的多项是完全平方式?

  答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.

  问:下列多项式是否为完全平方式?为什么?

  (1)x2+6x+9; (2)x2+xy+y2;

  (3)25x4-10x2+1; (4)16a2+1.

  答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以

  x2+6x+9=(x+3) .

  (2)不是完全平方式.因为第三部分必须是2xy.

  (3)是完全平方式.25x =(5x ) ,1=1 ,10x =2·5x ·1,所以

  25x -10x +1=(5x-1) .

  (4)不是完全平方式.因为缺第三部分.

  请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?

  答:完全平方公式为:

  其中a=3x,b=y,2ab=2·(3x)·y.

  例1  把25x4+10x2+1分解因式.

  分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.

  解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.

  例2 把1- m+ 分解因式.

  问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?

  答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“ ”是 的平方,第二项“- m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.

  解法1 1- m+ =1-2·1· +( )2=(1- )2.

  解法2 先提出 ,则

  1- m+ = (16-8m+m2)

  =  (42-2·4·m+m2)

  = (4-m)2.

  三、课堂练习(投影)

  1.填空:

  (1)x2-10x+( )2=( )2;

  (2)9x2+( )+4y2=( )2;

  (3)1-( )+m2/9=( )2.

  2.下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多

  项式改变为完全平方式.

  (1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;

  (4)9m2+12m+4; (5)1-a+a2/4.

  3.把下列各式分解因式:

  (1)a2-24a+144; (2)4a2b2+4ab+1;

  (3)19x2+2xy+9y2; (4)14a2-ab+b2.

  答案:

  1.(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2.

  2.(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式.

  (2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式.

  (3)是完全平方式,a2-4ab+4b2=(a-2b)2.

  (4)是完全平方式,9m2+12m+4=(3m+2) 2.

  (5)是完全平方式,1-a+a2/4=(1-a2)2.

  3.(1)(a-12) 2; (2)(2ab+1) 2;

  (3)(13x+3y) 2; (4)(12a-b)2.

  四、小结

  运用完全平方公式把一个多项式分解因式的主要思路与方法是:

  1.首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解.有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解.

  2.在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b) 2;如果是负号,则用公式a2-2ab+b2=(a-b) 2.

  五、作业 

  把下列各式分解因式:

  1.(1)a2+8a+16; (2)1-4t+4t2;

  (3)m2-14m+49; (4)y2+y+1/4.

  2.(1)25m2-80m+64; (2)4a2+36a+81;

  (3)4p2-20pq+25q2; (4)16-8xy+x2y2;

  (5)a2b2-4ab+4;         (6)25a4-40a2b2+16b4.

  3.(1)m2n-2mn+1; (2)7am+1-14am+7am-1;

  4.(1) x -4x; (2)a5+a4+ a3.

  答案:

  1.(1)(a+4)2; (2)(1-2t)2;

  (3)(m-7) 2; (4)(y+12)2.

  2.(1)(5m-8) 2; (2)(2a+9) 2;

  (3)(2p-5q) 2; (4)(4-xy) 2;

  (5)(ab-2) 2; (6)(5a2-4b2) 2.

  3.(1)(mn-1) 2; (2)7am-1(a-1) 2.

  4.(1) x(x+4)(x-4); (2)14a3 (2a+1) 2.

  课堂教学设计说明

  1.利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质.

  2.本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法.在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点.例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法.

22.2.3 公式法 篇4

  教学设计示例

  ――完全平方公式(1)

  教学目标 

  1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;

  2.理解完全平方式的意义和特点,培养学生的判断能力.

  3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.

  4.通过分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

  教学重点和难点

  重点:运用完全平方式分解因式.

  难点:灵活运用完全平方公式公解因式.

  教学过程 设计

  一、复习

  1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

  答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.

  2.把下列各式分解因式:

  (1)ax4-ax2             (2)16m4-n4.

  解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

  (2) 16m4-n4=(4m2)2-(n2)2

  =(4m2+n2)(4m2-n2)

  =(4m2+n2)(2m+n)(2m-n).

  问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

  答:有完全平方公式.

  请写出完全平方公式.

  完全平方公式是:

  (a+b)2=a2+2ab+b2,   (a-b)2=a2-2ab+b2.

  这节课我们就来讨论如何运用完全平方公式把多项式因式分解.

  二、新课

  和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到

  a2+2ab+b2=(a+b)2;    a2-2ab+b2=(a-b)2.

  这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.

  问:具备什么特征的多项是完全平方式?

  答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.

  问:下列多项式是否为完全平方式?为什么?

  (1)x2+6x+9; (2)x2+xy+y2;

  (3)25x4-10x2+1; (4)16a2+1.

  答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以

  x2+6x+9=(x+3) .

  (2)不是完全平方式.因为第三部分必须是2xy.

  (3)是完全平方式.25x =(5x ) ,1=1 ,10x =2·5x ·1,所以

  25x -10x +1=(5x-1) .

  (4)不是完全平方式.因为缺第三部分.

  请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?

  答:完全平方公式为:

  其中

22.2.3 公式法

22.2.3 公式法(通用15篇)22.2.3 公式法 篇1  教学内容  1.一元二次方程求根公式的推导过程;  2.公式法的概念;  3.利用公式...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?