《圆柱的表面积》课堂实录
《圆柱的表面积》课堂实录(精选16篇)
《圆柱的表面积》课堂实录 篇1
(一)知识目标
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
(二)能力目标
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点 能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学过程:
课前谈话(激发兴趣):今天来了这么多听课的老师,同学们高兴吗?(生:高兴)让我们用热烈的掌声欢迎他们的到来。在刚刚结束的体育运动会中,我们六(2)班包揽了团体赛的冠军,你们在赛场上的团结、拼搏精神给全体老师留下了深刻的影响,他们更想看看在课堂这一主阵地上六(2)的同学又是怎样的呢?面临这种考验,你们想不想说点儿什么?
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……
师:我坚信你们一定不会让老师失望的。
一、引入新课:
师:昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)
二、探究新知
师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?
指名学生摸其表面积,并追问:怎样求它的表面积?
生:六个面的面积和就是它的表面积
师:怎样求圆柱的表面积呢?(学生分组讨论)
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)
1、圆柱的侧面积
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长高
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)
《圆柱的表面积》课堂实录 篇2
一、教学构思
圆柱是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个圆柱形状的笔筒需要多少材料。虽然学生已经学会了如何计算圆柱的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:笔筒的外形是什么样的?圆柱吗?计算所需材料的面积是否就是计算这个圆柱的表面积?做的笔筒没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《圆柱的表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决笔筒制作的问题来开展教学。
在教学中要确立学生的主体地位,那么在教学中必定要注重学生经历学生研究的过程。当学生体验了知识的生成过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。
二、教学目标:
1.使学生理解和掌握圆柱表面积的计算方法,能够正确计算圆柱的表面积。
2.使学生能够根据实际情况计算圆柱里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
三、教学活动过程:
(一)引导学生学习圆柱表面积的计算方法
1.回忆
上节课我们学习了圆柱表面积的概念,那么谁来说一说什么叫做表面积以及圆柱的表面积?
2.联想:
(拿起一个圆柱的模型,手摸着面)提问:圆柱的面有什么特点?圆柱的表面积是指什么?圆柱每个面的面积怎样算?所以可以怎样计算圆柱的表面积?
3.归纳引入新课:
圆柱的一个侧面积加两个底面积的总面积就是圆柱的表面积。圆柱的表面积怎样求呢?这就是这节课的主要内容(板书课题)
4.教学例4
一定圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要多少面料?
提问:题目条件是什么,让我们求什么?求至少要多少面料,是求圆柱的什么?你会算吗?
小结:这顶厨师帽的下面应该是没有的,所以在这里,不需要我们算圆柱的下面,也就是说少算一个底面。
(二)笔筒的制作问题
说明:我们已经学会了计算圆柱的表面积。在实际生产和生活过程中,有时不需要计算圆柱3个面的总面积,只需要计算某几个面的总面积,比如我们刚做的那道题,这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算。
1.帮助学生回忆笔筒的形状(圆柱体,但是没有上面)
2.如何计算所需材料的面积?(就是求这个圆柱的表面积,但是要减去上面的面积)
3.课本第16页第10题:
(出示笔筒模型)
(1)笔筒缺少哪个面?(上面)
(2)要求至少需要多少彩纸,要算几个面的面积和?算不算上面?如何计算每一个面的面积?(2个面,没有上面,侧面=底高,下面=一个圆的面积=π )
(3)指名学生板演,集体订正。
(点评:在教学中采用学生生活中较熟悉的物体“笔筒”启发学生如何计算制作一个笔筒所需材料的面积,也就是计算圆柱体某几个面的面积之和。这个事例在生活中较普遍,再加上利用一些模具进行教学,使得学生在学习中能够更好地联系实际情况进行学习。以上这一系列的活动表现了完整的探究过程,都体现让学生经历整个教学的探究过程。)
4、练习:课本p18页练习二的第15题。
(点评:要计算圆柱体某几个面的面积之和,关键是要知道如何计算圆柱每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)
《圆柱的表面积》的教学反思:
课上学生很快讨论出圆柱的表面积的计算方法。由于学生在之前的学习中已经接触了“化曲为直”的数学方法,所以把圆柱的侧面展开成长方形(或正方形)学生已经能想象和深刻理解,并且通过想象和推理能够明确展开的长方形的长 (宽)就是圆柱底面的周长,展开的长方形的宽(长)就是圆柱的高,因此,学生对于怎样求圆柱的表面积能够理解和初步掌握。
但是,通过学生尝试计算圆柱表面积的过程中,仍然存在许多问题,第一:学生对于圆柱的表面积的计算方法虽然初步掌握但是很不熟练,具体表现在求圆的面积和圆的周长时,特别容易出现混淆,原因就是对求圆的面积和圆的周长的计算办法掌握欠熟练,特别是求圆的面积时,部分学生总是忘记把半径进行平方,或者是直接用给出的直径去平方,这都是对圆的面积计算办法掌握不熟练的表现;第二:学生的计算能力和计算正确率都有待提高,由于在计算过程中出现了圆周率,又有半径的平方的计算,所以很多学生的计算正确率很低。原因就是学生的口算能力、笔算能力都没有形成技能,只掌握计算方法但不能熟练准确的计算,这都是学生能够准确求出圆柱表面积的障碍。
针对这种情况,我打算采取这样的办法:第一:强化学生对圆的面积和圆的周长、圆柱侧面积的计算办法。第二:在计算时提醒学生仔细认真,出错时要找出出错的原因,对证改错。同时结合课前三分钟计算的时间,加强学生的计算练习。总之,让学生熟练准确的计算圆柱的表面积和侧面积,可以为下一步学习和计算圆柱的体积扫清障碍。
《圆柱的表面积》课堂实录 篇3
教学内容:《圆柱的表面积》是小学数学第十二册的教学内容。
教学目标:1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:圆柱形物体、学具、多媒体课件
教学重点:圆柱侧面积的计算方法推导。
准备:课前布置学生用纸片试做一个圆柱体。
教学过程:
一、交流做圆柱体的情况。
师:昨天老师布置你们做一个圆柱体,做起来了吗?谁来介绍一下你是怎样做的。
生1:我是先找一个圆柱体的茶叶罐,贴着底面剪了2个圆,然后再紧贴着侧面剪下了一个长方形,最后用透明胶粘起来。
生2:我也先剪出两个一样大的圆,然后剪出一个长方形,开始怎么也做不出来,不是圆太大了就是太小了,后来不断修整,总算做起来。
生3:我发现两个圆要一样大,长方形纸片的长与圆周长相等时很快就做起来。
师:这说明什么呢?
一生抢着说:“原来底面圆的周长等于长方形的长”。
二、探索圆柱表面积的计算方法。
(1)引入
师:这节课我们要研究怎样计算圆柱的表面积。下面我们先来回顾一下圆的面积计算公式是怎样推导出来的?
生:把圆切割拼成一个近似的长方形。(师用电脑演示过程)
师:圆面积公式的推导方法,对圆柱的表面积公式推导有没有启示呢?你们打算怎么做?
生:把圆柱剪开,变成我们学过的图形。
师:下面分小组探索圆柱的表面积的计算方法。
(2)小组汇报
生1:我们小组把做的圆柱体展开后,发现圆柱体由2个相同的底面,和一个侧面组成。侧面展开是长方形,侧面积=底面周长高。2个底面面积=兀r22。所以,圆柱表面积=底面周长高+兀r22 。
生2:我们小组同意他们的方法,我们还能用一个字母公式来表示:s圆柱=2兀rh+兀r22 。
师:还有不同方法吗?
生3:我的方法是,s圆柱=2兀r(h+r)不知道行不行。我是从第2个同学公式中,运用乘法分配律转化过来的。
师:这样做的结果是一样的,有什么道理呢?
(生陷入思考)
师:从公式看2个底面圆跑到哪去了呢?
一个学生恍然大悟,激动地说我知道,转化成长方形了。大多数学生还没领悟过来,他马上到黑板画草图,在老师协助下完成。一画完教室里就响起了热烈的掌声。
师:太不简单了,这种方法可以说是数学上的一项伟大发现。连书本上都没有,我要向更多的同学和老师介绍。
师:现在我们有两种方法来计算圆柱的表面积,那么计算一个圆柱的表面积至少要知道什么条件呢?
生1:半径或直径和高。
生2:有周长和高也行。
生3:我发现已知周长和高,用第二种方法计算比较快。
师:在我们实际生活中有很多特殊情况,同学们要根据具体情况,灵活处理。
三、自学例3
师:注意思考:(1)这个圆柱形水桶,有什么不一样,计算时要注意什么?
(2)什么叫“进一法”?什么情况下要运用进一法?
生1:这个水桶只有一个底面,不能多算成2个。
生2:“进一法”书上告诉我们,就是计算结果在求近似数时,没满4也要向前一位进一,就像昨天我们做圆柱体时,要留点“接头”用胶水粘,接头不能舍去。
师:在一些用料问题上,我们要根据实际情况来考虑。
四、 计算练习(出了3道题)
由于计算繁杂时间略显不足,正确率不高,不能全面反馈学生的掌握情况。
反思:
这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。
一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。
二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。
三、我也体验到了怎么教数学。(1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。(2)立足发展学生的能力,设计课堂教学的策略。(3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。
四、不足改进。在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。
《圆柱的表面积》课堂实录 篇4
背景分析:
数学离不开生活,生活离不开数学。本节内容正是大家都非常熟悉的一种图形――圆柱。根椐六年级学生的心理特点和已有的生活经验,本节内容把生活中的数学引入课堂,通过学生熟悉的生活提炼出数学问题,把抽象的知识形象化。能用所学的知识解决现实生活中的实际问题,同时培养孩子收集处理信息的能力、观察分析问题的能力和实践应用的能力。
教学内容:义务教育课程标准实验教科书人教版六年级数学下册第13-14页例3、 例4
教学目标:
1、理解圆柱的表面积的意义。
2、掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。
3、能灵活运用求圆柱侧面积、表面积的有关知识,解决生活中的实际问题。
教学重点:掌握圆柱的侧面积和表面积的计算方法。
教学难点:运用侧面积、表面积的知识解决实际问题。
教学过程:
【片段1】温故互查(2人小组讨论交流,组长补充)
师:同学们,星光大道是大家都非常喜爱看的一个文艺节目,今天老师也想在咱们班来一场星光大道智力大比拼,不知道大家有信心没有?
生:(异口同声)有
师:老师宣布比赛规则,每四人一组为一组合,也就是说咱们比的是团体,而不是个人。比赛共分五个环节,每一环节选表现最好的一组给它们加3分,最后累积分值最高组为明星组合。请同学们做好准备。首先进入第一环节――温故互查。请大家带着下面的问题以2人小组互述上节课我们学习的内容。在互述的过程中,大家要学会倾听。
(学生自由讨论)
1、圆柱是由哪几部分组成的?
2、已知圆的半径用字母r 表示,怎样求圆的直径、周长和面积?
3、长方形的面积公式是什么?
师总结:刚才听了大家各组的叙述,老师觉得大家上节课学的知识非常扎实,而且语言表达能力也越来越强,每个组表现的都是那么棒,但是最好的要数杨丽这一组(第三组)了,他们组不但叙述完整,而且非常有序,其它组稍微有一点混乱,所以老师决定给他们组加3分。好不好?
生:好。
老师给第三小组加3分。
◆评析:从学生感兴趣的话题引入,充分调动了学生的学习兴趣,同时在设计这个环节时,通过复习上面三部分的内容,为求圆柱的表面积做好了铺垫。需要注意的是,数学是一门严谨的学科,学生在互述时,教师一定要强调语言的规范性,同时对叙述完整的组要给予适当的鼓励,激发他们的公平竞争意识。
【片段2】设问导读
师:下面进入我们的第二环节――设问导读。出示例3 圆柱的表面积怎么求?
师:请同学们拿出事先做好的圆柱,把它展开。通过观察和讨论回答下面的问题。(4人小组讨论交流,并把讨论结果展示在小组黑板上)
(1)圆柱的底面积=( )
(2)圆柱的侧面积=( )( )
(3)圆柱的表面积=( )+( )
师:几个组已经把答案写在小黑板上了,我们大家一起来判断一下,这个环节哪个组可以得第一,请大家注意,大家在判断时,不仅要看答案是否正确,还要看书写是否规范?
生:第四组。(第三组、第一组)
师:选第四组的人最多了,那我们给第四组加上3分。同时希望其它组向他们组学习,能够做到即对又好。
◆评析:学习任何新知的最佳途径就是让学生自已去发现,这样掌握的比较牢。根椐新课改的要求,学生是学习的主体,我在备课时主要考虑让学生可以通过自主活动,根据所学的知识自行解决问题,从而完成教学要求。在整个活动过程中让每一位同学都真正参与进来,提高他们的学习效率。
2、师:通过刚才的闯关,老师发现咱们班的学生个个都非常聪明,借这个机会,老师想让大家帮忙解决一个问题。出示例4 一顶圆柱形厨师帽,高28厘米,帽顶直径20厘米,做这样一顶帽子需多少面料?(得数保留整十平方米)请同学们自由讨论、交流,找到问题的答案。
(1)厨师的帽子是什么形状的?
(2)厨师的帽子由几个面组成,分别为( )个( )和( )个( )。
(3)要求这样一顶厨师的帽子需用多少面料,实际是求这顶圆柱形帽子的(表面积),因为帽子下面没底,所以我们在计算帽子的表面积时用( )加( )即可。
师:讨论完上面的问题后,请各位同学把这道题做在自已的练习本上,然后4号组员把自已的作业展示到小黑板上。
每组4号同学把答案写到黑板上。
师:各位同学都已经算出来了,现在让我们把视线转移到小黑板上,看看每组4号同学的才艺展示。
生:第三组把单位“平方厘米”写成了“厘米”。
师:这位同学观察很认真,第三组的单位带错了,面积单位应该是平方厘米。好,我们给这位同学个人加一分。还有吗?
生:最后结果也不一样,有2070平方厘米和2080平方厘米两个答案。
教师质疑:为什么会有两个答案呢?
师:首先请答案是2070平方厘米的同学代表说明理由。
生:这道题最后结果是2072.4,因为得数要保留整十数,根椐四舍五入法得出2070。
师:请答案是2080平方厘米的学生代表说明理由。
生:因为在实际生活中,使用的面料往往比计算结果要多一些,所以在保留整十数时,选用了“进一法”。
师:请同学们判断,哪位同学说的有道理?
生:第二位同学说的有道理。
师:第二位同学说的非常正确,今后在遇到类似的问题时大家一定要注意哟。同时向做对的同学个人加1分。
◆评析:“四舍五入”,“进一法”,和“去尾法”都是求近似值的方法,在运用时要根椐实际生活情况采用相应的方法,一般情况下,求用料多少时多采用“进一法”。
【片段3】自学检测(通过本课学习,自主完成下面的试题)
师:帮老师解决了个人问题后,我们接着来看第三关――自学检测。
1、填空
圆柱的表面积由( )和( )组成。
圆柱的侧面积=( )
圆柱的底面积=( )
圆住的表面积=( )+( )
2、计算
已知一个圆柱的底面半径是5厘米,高是12厘米,求圆柱的底面积是多少?圆柱的侧面积是多少?圆柱的表面积是多少?
已知圆柱的高是4米,底面直径是10米,求圆柱的表面积是多少?
已知圆柱的底面周长是12.56分米,高是8分米,求圆柱的表面积是多少?
师:做完后,同桌之间互查,有什么不明白的地方同桌互相交流,同桌之间解决不了的由老师解决。
学生开始互查
师:请各组大组长汇报一下各组做题的情况。
第一组:我们组都对了。 第二组:王艳错了一道,现在已经改了。
第三组:我们组都对了。 第四组:我们组都对了。
第五组:张飞和王红各错了一道,也改了。 第六组:我们组都对了。
师总结:好,我们给全做对的组各加3分,做错的组,很遗憾就不能加分了,不过大家也不要气馁,我们还有两关,希望分数暂时落后的小组在后面的两关能过关斩将,迎头赶上。
◆评析:本环节的作业全部是围绕求圆柱的表面积公式设计的。是对刚学知识的一个练习和巩固,基本上没有设置难度,只要学生能够认真计算,就不会有太大的问题。
【片段4】巩固练习
师:让我们进入第四关――巩固练习。
用铁皮制作一节通风管,它的长是70厘米,底面圆的半径是5厘米,至少需要钱皮多少平方厘米?做这样的通风管十节需要铁皮多少平方厘米?
师:大组长作业完成后交老师,其它同学交大组长。全部完成后,大组长向老师汇报结果。
各组汇报作业情况。
师总结:通过刚才的汇报情况,作业最好的组要数第五组了,我们给第五组加上3分。
◆评析:数学来源于生活,又服务于生活。求一节通风管的面积,实际是求没有两个底面面积的圆柱的表面积,即求圆柱的侧面积。学生在掌握了求圆柱表面积的公式后,还要求学生能够灵活运用。
【片段5】拓展延伸
师:现在还剩下最后一关,胜败在此一举,希望各位选手仔细读题,认真思考,把握为组增光的最后一次机会,好,让我们一起进入――拓展延伸。
一根圆柱形木头,长8米,底面半径是20厘米,把它截成2段小圆柱形木头,表面积增加了多少?
师:刚才大家都做了一下这道题,我们请几位同学把他的解题思路说一下。
生1:把一根圆柱載成2小段圆柱,实际增加了2个底面面积,所以只要求出这根圆柱的2个底面面积即可。
生2:先求出原来一根圆柱形木头的表面积,再求2根小圆柱形木头的表面积,再用2根小圆柱形木头的表面积减去1根圆柱形木头的面积就是增加的面积。
师:还有别的方法吗?
生:没有。
师:同学们观察,哪种方法简单。
生:第一种。
师:对了,数学题经常有一题多解的情况,我们要选最简单的方法去算。不过这道题我们要求做对答案就可以加分了,请做对的同学举起手来。全做对的组有2组、3组和5组。我们分别给这三组各加3分。
师:5个环节全部比赛完毕,现在大家快速统计各组分数。
生:一组3分,2组3分,3组12分,4组6分,5组6分,6组3分。
师:现在大家很容易就能看出来今天咱们班的明星组合是……
生:第3组。
师:恭喜第3组获得我们班今天的明星组合,希望大家努力学习,明日之星将非你莫属。好,下课。
◆评析:简单的试题容易让学生感到枯燥乏味,为了激发学生的探究精神,保持学习的高度积极性,我设计了此题。此题也是解决圆柱表面积的问题,但有了一定的难度。需认真思考才能完成。对学困生可酌情考虑是否选做本题。
教学反思:
1、兴趣导课,调动学生的积极性,同时,教师积极为学生创造动手动脑的机会,同时采用小组互助的形式让学生去探究,激发学生的求知欲望,让学生自主探索,合作交流,引导学生进行组内和全班交流,促进他们在自主探索的过程中真正理解和掌握数学知识技能,鼓励学生发表不同的看法,当学生中出现不同的想法时,教师给予积极的评价和正确的引导。促使学生积极主动的参与探究知识规律的认识活动,实现教与学的巧妙结合。
2、根椐小学数学来源于生活,又应用于生活的特点,教师选取的例题都和学生现实生活有一定联系,使学生在身边的事情中发现数学,通过身边的事情学习数学,把数学知识应用到自己的生活中去。因此,在数学教学中,教师要尽量使问题有实际性,更贴近生活。
3、选题从易到难,照顾不同层次的学生,让每一位学生的潜力都能得到最大程度的发挥。
《圆柱的表面积》课堂实录 篇5
《圆柱的表面积》教学反思
《圆柱的表面积》教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。
在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,让学生在动手操作、合作探究中学习。将圆柱侧面积计算方法的推导作为教学难点来突破,将圆柱的表面积的计算作为重点来教学。
一、在复习引入环节,我首先通过复习圆的周长和面积的计算,为下面的计算圆柱的侧面积和表面积打下基础;复习圆柱的特征为后面侧面积和表面积的公式推导做好铺垫。
二、在侧面积和表面积的计算环节中,我首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积的和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,在这一环节中,培养了学生的观察、分析能力,同时也培养了学生的合作意识。
三、在练习题的设计中,遵循了从易到难的原则,在形式、难度、灵活性上都有体现。判断题有利于学生对知识的理解;动手测量并计算圆柱体实物表面积的题目,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。
四、在教学方法上,充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式。
在这节课的教学中,还存在着一些不足:
1、实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,大部分学生联系上节课的经验说出看法,而没有实际操作,我也没有让他们展示推导的过程,加深印象,只是让他们说一说,导致一部分学困生只能听听而已;
2、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;
3、部分学生对生活问题中的圆柱表面积(不是三个面的)理解上有欠缺。
《圆柱的表面积》教学反思
“圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,我是将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。
我认为这节课只要解决了圆柱的侧面积计算,圆柱的表面积计算就会水到渠成,于是我首先安排了侧面积的计算。学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。圆柱的侧面展开后是长方形(也有可能是正方形);长方形的长等于圆柱底面的周长,宽等于圆柱的高。因为长方形的面积=长宽,所以圆柱的侧面积=底面周长高。圆柱由三部分组成,只要算出它的侧面积和一个底面积,就能很快得出圆柱的表面积。
教学圆柱的表面积计算后,就安排了表面积在实际生活中的应用例题。生活中圆柱体比较多见,应用广泛,如圆柱形油桶、花坛、通风管等,解决问题时,就要联系生活实际,是求哪些部分的面积。在保留小数时,要引导学生认识理解,所要用的原料都要比实际计算的结果稍微多一些,要考虑到接口等实际问题,所以要采取进一法。
从课后作业中,我得到反馈,学生出现了典型的错误,我认真反思,觉得有些方面做的不够。
1、圆的周长和圆的面积是两个截然不同的概念,计算公式也肯定不同。但计算之前没有进行适当的复习,导致在计算侧面积时用了底面积乘高,而在计算底面积时又用了周长公式,个别学生搞混淆了。
2、圆柱的表面积计算,大多数学生列了综合算式,其中有一步计算错误导致全题错误。刚学时最好要求学生列分步式计算,不但理清思路,更能减少失误。
我会坚持课后进行反思,发扬优点,找出不足,做得不够的方面在下次想办法弥补!
六年级数学圆柱的表面积教学反思
“圆柱的表面积”历来是学生学习的难点。观察发现,
难点一:圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个“化曲为直”的过程。这是理解的难点;
难点二:在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;
难点三:计算难度大,无论是圆的周长和面积计算中都涉及圆周率(∏);
难点四:类似制作烟囱、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。
如何有效组织教学,谈谈自己的粗浅的看法。
一、抓住特征,建立表象。在六年级上学期,已经学习了长方体和正方体的表面积,学生对表面积的概念并不陌生。教学圆柱的表面积时,重点是通过制作圆柱模型、观察圆柱展开图,让学生理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的。通过操作,真正建立圆柱侧面的表象。
二、突破难点,紧抓联系。探索并理解侧面积的计算方法是这部分教学的难点。圆柱的侧面是一个曲面,结合具体情境,展示了圆柱的侧面展开图,沿着高将侧面展开后是一个长方形。“化曲为直”过程中,教学重点要抓二者之间的联系,即展开后长方形的长就是圆柱的底面周长,宽是圆柱的高。通过“展”、“围”的反复操作,让学生切实建立这两者之间的联系,有利于突破难点。
三、抓住本质,理清思路。圆柱的表面积包括一个侧面和两个底面。计算圆柱的侧面积时要用圆柱的底面周长乘高,而圆柱的底面积则需用到圆的面积公式。在同一题里,周长公式与面积公式混淆也是计算圆柱表面积出错的原因之一。怎样能更好的理清思路,灵活的进行计算呢?我认为,尽量将复杂的问题简单化,以不变应万变。即圆柱的侧面展开图是一个长方形,计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。当然,涉及到解决具体的问题,我们就要联系实际具体问题具体对待。
本单元的学习有利于发展学生的空间概念,有利于培养学生的思维的有序性,有利于培养学生认真审题的好习惯,提高学生灵活应用能力
《圆柱的表面积》课堂实录 篇6
教学目标
1 .理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2 .能正确地计算圆柱的表面积。
3 会解决简单的实际问题。
4 .初步培养学生抽象的逻辑思维能力。
教学重点
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程
一 复习旧知。
1 计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2 求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3 讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二 新课导入。
1 教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)
2 学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3 反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)
4 教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5 说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三 新课教学。
1 例2 一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)
2 学生尝试练习,教师巡回检查、指导。
3 反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)
(2)底面积:3.14×2×2=12.56(平方分米)
(3)表面积:56.52+12.56=81.64(平方分米)
答:它的表面积是81.64平方分米。
4 学生质疑。
5 教师强调答题过程的清楚完整和计算的正确。
6 教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四 反馈练习:试一试。
1 学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
2 学生交流练习结果(注意计算结果的要求)。
3 教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五 拓展练习
1 教师发给学生教具,学生分组进行数据测量。
2 学生自行计算所需的材料。
3 计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六 巩固练习。
1 计算下面图形的表面积(单位:厘米)(略)
2 计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3 一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4 一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
《圆柱的表面积》课堂实录 篇7
(一)知识目标
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
(二)能力目标
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学过程:
课前谈话(激发兴趣):今天来了这么多听课的老师,同学们高兴吗?(生:高兴)让我们用热烈的掌声欢迎他们的到来。在刚刚结束的体育运动会中,我们六(2)班包揽了团体赛的冠军,你们在赛场上的团结、拼搏精神给全体老师留下了深刻的影响,他们更想看看在课堂这一主阵地上六(2)的同学又是怎样的呢?面临这种考验,你们想不想说点儿什么?
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……
师:我坚信你们一定不会让老师失望的。
一、引入新课:
师:昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)
二、探究新知
师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?
指名学生摸其表面积,并追问:怎样求它的表面积?
生:六个面的面积和就是它的表面积
师:怎样求圆柱的表面积呢?(学生分组讨论)
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)
1、圆柱的侧面积
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)
投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
2、圆柱的表面积
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积
师生小结:圆柱的表面积=底面积×2﹢侧面积
3、反馈练习:(略)
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)
《圆柱的表面积》课堂实录 篇8
课题
《圆柱的表面积》
主备课人
授课人
课型
备课时间
上课时间
集体备课内容
个案补充
自
学
过
程
学
习
过
程
学习目标:
1、通过具体情境和动手操作,探索求圆柱的侧面积和表面积的方法。
2、能灵活运用圆柱表面积的计算方法解决生活中的实际问题。
重难点:
1、理解圆柱侧面展开图的多样性,能将展开图与圆柱的各部分联系起来,并推到出圆柱侧面积和表面积的计算公式。
自主学习:
1、一个长方体由( )个面围成,求它的表面积就是求它( )个长方形面积的( )。(和、差、积、商)
2、一个圆柱体由( )个面围成,( )个底面,( )个侧面。则圆柱的表面积应等于( )与( )的和。
3、圆柱的底面是( )的两个圆,所以两个底面的面积s=( ).
合作交流:
1、用自己喜欢的方式将手中的圆柱形纸筒剪开,观察展开的图形各部分与圆柱有什么关系?
2、怎样剪展开的图形是一个长方形?这个长方形与圆柱的那个面有关系?是什么关系?长方形的长与宽分别与圆柱有什么关系?那么圆柱的侧面积等于什么?
3、怎样剪展开的图形是一个平行四边形?平行四边形的底和高分别与圆柱有什么关系?那么圆柱的侧面积等于什么?
4、如果圆柱的侧面展开是一个正方形,那么这个圆柱有什么特点?与正方形的边长有什么联系?
课堂练习:
1、圆柱的侧面只有沿( )剪开展开的图形才是长方形,长方形的长等于( )长方形的宽等于( )。
2、圆柱的侧面积等于( )( ),公式s=( )。如果已知底面半径为r,则侧面积公式s=( ),如果已知底面直径为d,则侧面积公式s=( )
3、圆柱的表面积等于( )+ ( )。
4、如果圆柱的侧面展开是一个正方形,那么圆柱的高等于圆柱的( )等于正方形的( )。
例题:
做一个底面半径为10厘米,高为30厘米的圆柱形纸盒,至少需要多大面积的纸板?
精讲点拨:
1、做一个圆柱形无盖的铁皮水桶,地面直径4分米,高5分米,至少需要多大面积的铁皮?
教学反思
当堂检测:
1、 2.6米 = ( )厘米 48分米 = ( )米
7.5平方分米 = ( )平方厘米 9300平方厘米 = ( )平方米
2、填空:
(1)圆柱的( )面积加上( )的面积,就是圆柱的表面积。
(2)把一个底面积是15.7平方厘米的圆柱,切成两个同样大小的圆柱,表面积增加了( )平方厘米。
(3)计算做一个圆柱形的茶叶筒要用多少铁皮,要计算圆柱的( )。
(4)计算做一个圆柱形的烟囱要用多少铁皮,要计算圆柱的( )。
(5)计算做一个没有盖的圆柱形水桶要用多少铁皮,要计算圆柱的( )。
(6)一个圆柱,它的高是8厘米,侧面积是200.96平方厘米,它的底面积是( )。
3、求下面各圆柱的表面积。
(1)底面半径是2分米,高是7.3分米。
(2)底面周长是18.84米,高是5米。
4、选择正确答案的序号填在括号里。
(1)圆柱的侧面积等于( )乘以高。
a、底面积 b、底面周长 c、底面半径
(2)把一个直径为4厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?算式是( )
a、3.14452 b、45 c、452
5、一个圆柱形无盖的水桶,底面的直径是0.6米,高是40厘米,做这样一个水桶,需要多少平方米的铁皮?(得数保留整数)
6、一个圆柱形水池,底面内半径是2米,高是1.5米,在池内周围和底面抹上水泥,抹水泥的面积是多少?
强化训练:
1、一个圆柱高9分米,侧面积226.08平方分米,它的底面积是多少平方分米?
2、一根长2米,底面积半径是4厘米的圆柱形木段,把它据成同样长的4根圆柱形的木段。表面积比原来增加了多少平方厘米?
3、一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶至少要用铁皮多少平方厘米?(接口处不计,得数保留整百平方厘米)
4、压路机的滚筒是一个圆柱。它的横截面半径是0.5米,长是2米,它滚一周能压过多大的路面?如果它滚100周,压过的路面又有多大?
5、一个圆柱的侧面积是12.56平方米,底面半径是4分米,它的高是多少分米?
6、一个无盖的圆柱形铁皮水桶,底面直径是0.4米,高是0.8米,要在水桶里、外两面都漆防锈漆,油漆的面积大约是多少平方米?(得数保留一位小数)
《圆柱的表面积》课堂实录 篇9
教学过程:
一、导入
1、圆的半径是5cm,圆的周长是多少?面积呢?
2、长方形的面积的计算公式是:(说一说,做一做)
3、长方体和正方体的表面积怎么计算的?(小组交流汇报)
4、那么圆柱的表面积该怎么计算?
二、新授
(一)1、出示圆柱实物,师生共同探讨“圆柱的表面积指的是什么?”圆柱的表面积=?(结论:圆柱的表面积=圆柱的侧面积+两个底面的面积)
2、圆柱的底面积你会计算吗?(圆形面积s=πr2)
3、圆柱的侧面积你会计算吗?
①圆柱的侧面是什么形状?(长方形)
②圆柱侧面(长方形)面积=长方形的面积=长宽,
圆柱侧面(长方形)的长=?
圆柱侧面(长方形)的宽=?
③圆柱的侧面积=?
(组内观察交流讨论汇报说明理由)
4、小结:圆柱的表面=圆柱侧面积圆柱的高
(二)一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要多少面料?(得数保留整十平方厘米)
①求需要多少面料,就是求帽子的……?
②厨师帽是由那几个面组成的?
(三)一个圆柱地面半径是2cm,高是4.5cm,求它的表面积。本题与上一例题有何不同?
三、练习(练习二)
四、总结
通过本课学习你有哪些收获?
五、知识拓展
1、制作一个底面直径是40cm圆柱形水桶,用掉了9420cm的铁皮,这个水桶有多高呢?
2、一座风动力磨坊,高 10m,底面直径 6m,现在要为这座磨坊粉刷涂料,粉刷1平方米需要涂料 2公斤,那么需要买多少公斤的涂料呢?
板书设计:
圆柱的表面积
圆柱的表面积=两个底面的面积+圆柱的侧面积
圆柱的侧面积=底面周长圆柱的高
教学目标:
1、通过已知长方体、正方体的表面积迁移到圆柱的表面积。
2、在交流中让学生逐步理解圆柱表面积的含义,了解圆柱侧面积与表面积的关系。
3、圆柱表面积=两个底面(圆形)的面积+圆柱的侧面(长方形)面积,在推导过程中使学生们了解到圆柱侧面(长方形)的长等于底面的周长,侧面的宽就是圆柱的高,从而得出圆柱侧面积=底面周长圆柱的高。
重点难点:
1、理解圆柱的表面积含义,推导计算圆柱表面积,并能正确计算圆柱的表面积。
2、灵活运用圆柱表面积公式,解决生活实际问题。
教具学具:实物展台、圆柱实物、学生自制圆柱模型、生活中的圆柱
预习要求:圆柱的表面积是由哪几部分组成的?怎样计算出圆柱的表面积呢?
教学反思:
在教学过程中师生共同探讨、研究,利用多媒体课件与学生实践操作相结合的方法,很好的使学生理解并掌握了圆柱的表面积的推导和实际应用,完成了本课的预设目标。在今后的教学过程中应该多增加一些实际圆柱物体的表面积的计算和应用,因为学习知识的目的就在于应用。
《圆柱的表面积》课堂实录 篇10
一、设计理念及设计思路。
建立促进学生全面发展的数学课程体系是新课程改革的重要任务。数学要从以获取知识为着重目标转变为首先关注学生的发展,创造一个有利于学生活泼发展的教育环境,提供给学生一个充分探究、创新发展的空间。在学习中,学生是学习的主体,教师是教学活动的组织者、引导者和合作者。在这一教学理念的指导下,我在设计本节课时,重点和难点之处都是安排学生进行动手操作,讨论交流,学生参与到知识获取中,真正理解了圆柱的侧面积为什么是底面周长高,并能运用公式灵活计算。
数学学习活动不单是单纯的接受与记忆,而是让学生亲身经历和体验富有个性的探究过程。因此设计剪一剪、看一看、找一找、议一议等教学活动。
二、教学目标。
知识与技能:
1、理解表面积的含义;
2、掌握圆柱的侧面积,表面积的计算方法,会运用公式计算表面积,解决有关的简单实际问题。
过程与方法:
经历圆柱的侧面积、表面积的公式的发现过程,体验利用旧知识迁移学习的方法。
情感态度与价值观:
感悟数学知识的能力,体会数学知识之间的相互联系。
重点:理解求圆柱的侧面积、表面积的计算方法并能正确计算。
难点:灵活运用侧面积、表面积的有关知识解决实际问题。
教学准备:投影仪,圆柱模型、小剪刀。
三、教学过程。
(一)、复习引入。(投影出示)
(1)口答下列各题:
①圆的半径是1厘米,圆的周长是多少?面积是多少?
②长方体、正方体的表面积如何计算。(单位:厘米)
3 3
4 3
5 3
你能算出它们的表面积吗?
(2)引入新课:我们已经掌握了长方体、正方体的表面积的计算方法,今天我们要来探讨圆柱表面积该如何计算。
板书课题:圆柱的表面积
(二)、探究新知。
(1)圆柱的表面积的含义。
师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?(讨论、交流)
学生得出结论:圆柱的表面积=圆柱的侧面积+两个底面积
(2)计算圆柱的表面积。
①组织学生将自制的圆柱模型展开(分组学习)。
②侧面展开可能会出现以下几种情况:长方形、正方形、平行四边形。
③以长方形为例,指导学生观察联系。
长方形的长等于圆柱底面的周长,宽等于圆柱的高。
得出结论:长方形的面积= 长 宽
圆柱的侧面积=底面周长 高
师:圆柱的两个底面是圆形,我们早就会计算它的面积了,现在我们又推导出圆柱的侧面积计算公式,那么你们知道计算圆柱的表面积吗?
(3)解决实际问题。
①投影出示例4:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(复数保留整十平方厘米)
②组织学生读题,找出条件,说说实际是求什么问题。(分组学习)
③学生独立完成计算。
④反馈订正。
订正时让学生讲解题思路和步骤及计算结果取近似值的方法。
强调:这里不能用“四舍五入”法取近似值。在实际中,使用的材料都要比计算得到的结果多一些,因此要用“进一法”取近似值。
三、课堂小结:圆柱的表面积怎样计算?
四、应用反馈。(独立完成计算)
1、一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。
2、广告公司制作了一个底面直径是1.5m,高2.5m的圆柱形灯箱,它的侧面最多可以张贴多大面积的海报?
板书设计:
圆柱的表面积
圆柱的表面积= 圆 柱 侧 面 积 + 两 个 底 面 积
宽(圆柱的高)
长(底面圆的周长)
圆柱侧面积=底面周长高
《圆柱的表面积》课堂实录 篇11
六年级《圆柱的表面积》导学案
学 习
目标
1、知道圆柱侧面积和表面积的含义。
2、通过操作推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
重点
圆柱侧面积和表面积的计算方法。
难点
运用所学的知识解决简单的实际问题。
学 习 过 程
师生笔记
知识链接:
1、用公式表示出圆的半径、直径、周长、面积之间的关系。
2、圆柱的上下两个底面都是( ),它们的面积( )。
3、长方形的面积=
长方体的表面积=
正方体的表面积=
知识超市 :
操作:(一)试一试,怎样可以得到圆柱形的侧面展开图?
把圆柱的侧面沿高剪开,展开图是( ),圆柱的底面周长就是它的( ),圆柱的高就是它的( )。
计算圆柱的侧面积实际就是计算( )
圆柱的侧面积=
(1)一个圆柱,底面周长是1.6m,高是0.7m,求它的侧面积。
(2)一个圆柱,底面直径是5cm,高是10cm,求它的侧面积。
操作(二)有两底的圆柱展开后呈什么形状?
圆柱是由( )和( )三部分组成的。
圆柱的表面积包括( )和( )。
所以圆柱体的表面积=
(3)一个圆柱的高是15厘米,底面半径是5厘米,求它的表面积
我会用:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
想:求做这样一顶厨师帽需用多少面料,实际上就是求这顶圆柱形厨师帽的( ),厨师帽由_________和__________组成。
列式计算:
达标检测:
(1)广告公司制作了一个底面直径是1.5m,深2.5m的圆柱形灯箱。它的侧面最多可以张贴多大面积的海报?
(2)用铁皮做一个圆柱形茶叶筒,底面直径是1dm,高是2dm,则做这个茶叶筒至少需要铁皮多少dm2?
(3)一个无盖的圆柱形铁皮水桶,底面直径是30厘米,高是45厘米。做这样一对水桶,至少需用铁皮多少平方厘米?
《圆柱的表面积》课堂实录 篇12
教学设计1
一、学习目标:
1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。
2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。
二、学习重点:
掌握圆柱侧面积和表面积的计算方法。
三、学习难点:
运用所学的知识解决简单的实际问题。
四、学习过程:
(一)、旧知复习
1、圆柱有几个面?分别是 、 和 。
2、底面是 形,它的面积= 。
3、侧面是一个曲面,沿着它的高剪开,展开后得到一个 形。它的长等于圆柱的 ,宽等于圆柱的 。
4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?
(二)列式为
1、圆柱的侧面积
(1)圆柱的侧面积指的是什么?
(2)圆柱的侧面积的计算方法:
圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积= ,所以圆柱的侧面积= 。
(3)侧面积的练习
求下面各圆柱的侧面积。
①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。
小结:要计算圆柱的侧面积,必须知道圆柱的 和 这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
2、圆柱的表面积
(1)圆柱的表面是由 和 组成。
(2)圆柱的表面积的计算方法:
圆柱的表面积=
(3)圆柱的表面积练习题
一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
分析,理解题意:求需要用多少面料,就是求帽子的 。需要注意的是厨师帽没有下底面,说明它只有 个底面。
列式计算:
① 帽子的侧面积=
② 帽顶的面积=
③ 这顶帽子需要用面料=
小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。
3、巩固练习
一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。
4、总结:通过这节课的学习,你掌握了什么知识?
圆柱的侧面积
圆柱的表面积
五、教学结束:
布置学生课下复习本节课内容。
教学设计2
【教材分析】
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。教材中选用了许多来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面展开后可以是一个长方形,在操作中经历“圆柱侧面积”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。
【学生分析】
学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。
【教学目标】
1、掌握圆柱侧面积和表面积的概念。
2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。
3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。
4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。
【教学重点】掌握圆柱的侧面积和表面积的计算方法。
【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。
【教具准备】圆柱体纸盒、多媒体课件。
【学具准备】圆柱形纸盒。
【教学过程】
一、引入新课
1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?
2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)
3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?
4、这节课我们就一起来研究“圆柱的表面积”这个问题。
二、探究新知
1、初步感知
(1)请同学们观察圆柱,想一想什么是圆柱的表面积。
总结:圆柱所有面面积的总和就是圆柱的表面积。
(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)
(3)圆柱的表面积怎么求?(两个底面积+侧面积)
(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。
2、侧面积
(1)小组合作:
请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。
(2)学生汇报
(3)教师总结演示。
(4)推导圆柱侧面积公式
圆柱的侧面积=底面周长×圆柱的高,用字母表示圆柱的侧面积公式也可以写成:S侧=C×h,如果已知底面半径为r,圆柱的高为h,侧面积公式变形为:S侧=2πrh
3、表面积
(1)总结表面积公式
怎么求圆柱的表面积?
圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。
(2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?
侧面积:2×3.14×10×30=1884(cm2), 底面积:102×3.14=314(cm2) ,表面积:314×2+1884=2512(cm2 )
三、巩固练习
1、现在我们自己尝试来算一算这两个圆柱的表面积。
过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。
2、设计一个无盖的圆柱形铁皮水桶,底面直径为4分米,高为5分米,至少需要多大面积的铁皮?
4、一台压路机的滚筒宽1.2米,直径为0.8米。如果它滚动10周,压路的面积是多少平方米?
5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?
四、总结收获
同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?
请记住同学们善意的提醒,这节课就上到这!
五、板书设计
圆柱的表面积
侧面积=底面周长×高
圆柱表面积= S侧=C×h=2πrh S表=2πrh+2πr2
底面积×2 =2πr2
教学反思
本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了学生的科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了学生的思维发展。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不 到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过 程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。
《圆柱的表面积》课堂实录 篇13
一、教学目标:
1、首先带动课堂气氛
2、教会学生什么是面积。
3、学习圆柱体侧面积和表面积的含义。
4、能够求圆柱的侧面积和表面积的方法。
二、教学重点:
动手操作展开圆柱的侧面积
三、教学难点:
圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
四、教具准备:
圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。
五、教学过程 :
(一)、 创设情境,引起兴趣。
出示:牛奶盒,纸箱,可比克。
提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)
(2)制作这些包装盒,至少需要多大面积的材料?(指名说)
师:谁能说说上一节课你学过圆柱体的哪些知识?
生:........
师:请同学们拿出你自制的圆柱体模型,动手摸一摸
生:动手摸圆柱体
师:谁能说一说你摸到的是哪些部分?
生:.......
师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积
(二)、 探索交流,解决问题。
圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题) 提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?
研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐 有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形) (展开的形状可能是长方形、平行四边形、正方形等)
1、独立操作 利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。
2.操作活动:
(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?
(2)观察这个图形各部分与圆柱体茶叶罐有什么关系? 独立操作后,与小组里的同学交流
3.小组交流 能用已有的知识计算它的面积吗?
4、小组汇报。 (选出一个学生已经展开的图形贴到黑板上)
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)
这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
板书:
长方形的面积= 长 × 宽
↓ ↓ ↓
圆柱的侧面积 =底面周长× 高
所以,圆柱的侧面积=底面周长×高
S 侧= C×h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
(四)、练习
求圆柱的侧面积(只列式不计算)
1。 底面周长是1.6米,高是0.7米
2。 底面直径是2分米,高是45分米
3。 底面半径是3.2厘米,高是5分米
(五)研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)
2、动画:圆柱体表面展开过程
3、圆柱体的表面积怎样求呢? 得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2 4. 一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)
(六),巩固应用,内化提高
1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同? 多媒体出示:水管,水桶,糖盒 提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)
2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米) 重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?
六、教学结束:
布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。
《圆柱的表面积》课堂实录 篇14
第一课时 本册总课时:9课时
【教学内容】:
p13-14页例3-例4,完成“做一做”及练习二的部分习题。
【教学目标】:
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
【教学重点】:
理解求表面积、侧面积的计算方法,并能正确进行计算。
【教学难点】:
能灵活运用表面积、侧面积的有关知识解决实际问题。
【教学过程】:
一、以旧引新
1.圆柱体有( )个面,分别是( )、( )、( )。
2.圆柱体上底和下底之间的距离,叫做( ),有( )条。
3.长方形面积=( )( )
圆的周长=( ) c=( )
圆的面积=( ) s=( )
二、新课
1.圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长高)
2.侧面积练习:练习七第5题
(1)学生审题,回答下面的问题:
① 这两道题分别已知什么,求什么?
② 计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3. 理解圆柱表面积的含义.
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积2
4.教学例4
(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
①帽子的侧面积:3.142028=1758.4(平方厘米)
②帽顶的面积:3.14(20÷2)2=314(平方厘米)
③需要的面料:1758.4+314=2072.4≈2080(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、巩固练习
1.做第14页“做一做”。(求表面积包括哪些部分?)
2. 练习七第6题。
【板书】:
圆柱的侧面积=底面周长高
圆柱的表面积=圆柱的侧面积+底面积2
例4:①帽子的侧面积:3.142028=1758.4(平方厘米)
②帽顶的面积:3.14(20÷2)2=314(平方厘米)
③需要的面料:1758.4+314=2072.4≈2080(平方厘米)
答:需要用2080平方厘米的面料。
《圆柱的表面积》课堂实录 篇15
圆柱的表面积
教学内容:教科书第33—34页的例l一例3,完成“做一做”和练习七的第2—5题。
教学目的:使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。并根据圆柱的表面积与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。
教具准备:圆柱形的物体,圆柱侧面的展开图
教学过程;
一、复习
1、指名学生说出圆柱的特征。
2 长方形的面积公式? 学生回答后板书:长方形的面积=长×宽
二、导入新课
教师:上节课我们认识了圆柱和圆柱的侧面展开图。请大家想一想,圆柱侧面的展开图是什么图形?
教师出示上节课实验用的罐头盒,引导学生回忆实验过程:沿着罐头盒的一条高剪开商标纸,再打开,展开在黑板上,得到的是一个长方形。
教师:这个展开后的长方形与圆柱有什么关系?
学生:这个长方形的长等于圆柱的周长,长方形的宽等于圆往的高。
教师:那么,圆柱侧面积应该怎样计算呢?今天我们就来学习有关圆柱的侧面积和表面积的计算。
三、新课
1,圆柱的侧面积。
板书课题:圆柱的侧面积。
教师:圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
教师边叙述边摸着圆柱的侧面演示给学生看,指出侧.面的大小就是圆柱的侧面积。
教师:从上面的实验我们可以看出,这个展开后的长方形的面积和因拄的侧面积有什么关系呢?
教师出示圆柱的侧面展开图,让学生观察很容易看到这个长方形的面积等于圆柱的例面积。
教师:那么,圆柱的侧面积应该怎样计算呢?
引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高
(板书上面等式:)
2、教学例1:
一个圆柱、底面直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)
让学生回答下面的问题:
(1)这道题已知什么,求什么?
(2)计算结果要注意什么?
指定一名学生板演,其他学生在练习本上做。教师行间巡视,注意发现学生计算中的错误,并及时纠正。做完后,集体订正。
3、小结。
要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径.底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式:
4、理解圆柱表面积的含义。
教师:请大家把上节课自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?
通过操作,使学生认识到:圆柱的表面由上、下两个底面和侧面组成。
教师指着圆柱的展开图,“那么,圆柱的表面积是什么?”
指名学生回答,使大家明确:圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
板书:圆柱的表面积=圆柱侧面积十两个底面的面积
教学例2。
一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
教颊:这道题已知什么?求什么?
学生:已知圆柱的高和底面半径,求表面积。
教师:要求圆柱的表面积,应该先求什么?·后求什么?
使学生明白:要先求圆柱侧面积和底面积,后求表面积。
教师:我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数据标在图上。
教师:现在我们把这个圆柱展开。出示展开图。
让学生观察展开图,“在这个图中,长方形的长等于多少?宽等于多少:圆柱的侧面积怎样计算?圆柱的底面积应该怎样求?”
指名学生回答,注意要使学生弄清每一步计算运用什么公式(如圆的周长公式和面积公式,长方形的面积公式,等等)。
然后指定一名学生在黑板上板演,其他学生在练习本上做。教师行间巡视,注意察看学生计算结果的计量单位是否正确。
做完后,集体订正。
6、教学例3。
,一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)
教师:这道题已知什么?求什么?
学生:己知圆柱形水桶的高是24厘米,底面直径是20厘米。求做这个水桶要用多少铁皮。
教师:这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分?
使学生明白:水桶没有盖,说明它只有一个底面。
教师:要计算做这个水桶需要多少铁皮,应该分哪几步?
指名学生回答后,指定两名学生板演,其他学生独立进行计算。教师行间巡视,注意察看最后的得数是否计算正确。
做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取舍的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五人法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。
7、小结。
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
四、巩固练习
1、做“做一做”的第1题。
教师:这道题已知什么?应该怎样求侧面积?
使学生明白可以直接用底面周长乘以高就可以得到侧面积。
让学生做在练习本上,做完后集体订正。
2、做一做的第2题。
让学生独立做在练习本上,教师行间巡视,做完后集体订正。
五、作业
1、完成第练习七的第2~~5题。
(1)第2、3题,是分别求圆柱的例面积和表面积,要求学生正确选用公式,认真仔细地计算。
(2)第4题,圆柱形沼气池·的形状和特点要向学生说明(特别是城市里的小学生),把它转化为数学问题,要弄清求的是圆柱哪些部分的面积。
(3)第5题,是先实际测量,再计算的题目,可以分组进行测量和计算,每组要量的茶叶筒的大小可以是不一样的。
2、让学有余力的学生做练习十的第6、7题。
第6·题.是已知圆柱的侧面积和底面半径,求圆柱的高。这样就要把求圆柱的侧面积的运算顺序颠倒过来。教师可以提示学生列方程解答。
第7题,是求一个没有盖的圆柱形铁皮水桶的用料:s=πr十2πh≈63.59 十 339.12=402.71≈410(平方分米)
《圆柱的表面积》课堂实录 篇16
教材分析:《圆柱的表面积》是人教版小学数学六年级下册第二单元的内容,是在学生已有初
教学要求:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学重点:圆柱表面积的计算。
教学难点:圆柱体侧面积计算方法的推导。
教具:圆柱体教具、多媒体课件。
学具:圆柱形纸筒、笔筒等。
教学过程:
师:(拿着圆柱模型)昨天我们认识了圆柱,谁来说说圆柱有哪些特征?(学生回答略)
师:拿出圆柱形状的罐头,辨析:外面的商标纸的面积就是圆柱的什么?学生(圆柱的侧面积)。好,今天我们首先来探讨圆柱的侧面积。(板书:圆柱的侧面积)
师:想一想如何计算包在外面的商标纸的面积?
生:圆柱的侧面是一个曲面,所以商标纸包在外面也是曲面,必须要把它拿下来。
师:说的对呀,那么怎么把商标纸拿下来,拿下来后和圆柱有什么关系?请同学们小组合作,拿出你们带来的圆柱形物体,动手操作去探究,去发现。
汇报交流:
生1:我们是沿着圆柱的高剪开的,剪开后就是一个长方形,-----
(还没有等他说完,另一个学生就抢着说)
生2:我们是斜着剪的,剪开后得到一个平行四边形;
我再问:还有不同的剪法吗?
生3:我没有剪,就是沿着罐头的接头撕开的,展开后也是一个长方形。
生4:我这个圆柱的商标纸有点紧,我撕得有点破,不太像长方形。
师:看来大家的方法很多,有两人剪成长方形,还有两人不是,有办法把那两种也变成长方形吗?
生5:简单,用我们上学期学的转化法就行了。接着他说了方法:就是再把那两种沿着高对折,剪开重新拼成长方形。
我照着他说的做演示,并且大声表扬他说:“同学们,这并不简单,转化方法是一种非常重要的数学思想方法,学会用它,就会化难为易,化复杂为简单啦!”
师:那么,我们可以总结一下,把圆柱的侧面沿着高剪开可以得到一个什么形?
师:这时,长方形的长和宽与圆柱有什么关系呢?(引导学生观察、发现)
生:长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,得到圆柱的侧面积=底面周长高。
生:老师,平行四边形也能推导出来,不需要变成长方形!让他来说说看,平行四边形的底就是圆柱的底面周长,平行四边形的高就是圆柱的高,也能推出来。我们给他以热烈的掌声,为他的精彩发言而喝彩!
生6:老师,刚才我没有用剪刀剪开,也没有撕,我也能推导出圆柱侧面积的计算方法。接着他边做边说:我这个商标纸有点松,我直接拖下来压平,这时也是一个长方形,长方形的长就是圆柱的底面周长的一半,长方形的宽就是圆柱的高,长方形的面积2就是圆柱的侧面积,也就是底面周长的一半高2,所以圆柱的侧面积=底面周长高。
师:今天同学们表现真不错,通过自己的探究活动,有自己的亲身体验,有自己的独特发现,同时我们从不同的途径得到了一个共同的结论,真棒!下面如果用s表示侧面积,c表示底面周长,h表示高。你能写出圆柱体侧面积的公式吗?(板书:s=ch)
基本练习(求侧面积)
1、底面周长是1.6米,高是0.7米
2、底面半径是3.2分米,高是5分米
3、底面直径是10厘米,高是25厘米
师小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
三、探究表面积
师: 我们掌握了圆柱的侧面积的计算方法,那么表面积怎样计算呢?
请大家把上节课自己制作的圆柱模型展开,观察一下,援助的表面由那几个部分组成?
生:圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
板书:圆柱的表面积=圆柱侧面积+两个底面的面积
5.教学例4。
课件出示例4的题目。
1教师:这道题已知什么?求什么?
2学生:已知圆柱的高和底面半径,求表面积。
3教师:要求圆柱的表面积,应该先求什么?·后求什么?
使学生明白:要先求圆柱侧面积和底面积,后求表面积。
4介绍进一法。
四、学以致用,灵活运用。
师:从例4可以看出来数学来源于生活,下面我们就来解决几道生活中常出现的问题。
提高练习:
1、做一个底面半径2分米,高10分米的圆柱形茶叶筒(如图),至少需要多少平方分米的铁皮?
2、用铁片制作圆柱形的通风管10节,每节长8分米,底面周长4分米,至少需要铁皮多少平方分米?
3、一个圆柱形水池,底面直径4米,池深5米,如果在水池的底面和四周涂上水泥。涂水泥的面积是多少平方米?
师:我们在解决实际问题时,一定要分析好求的是哪一部分的面积?在选择解答方法。
数学与我们的生活密切相关,你们想不想用今天所学的知识制作一个实用的学习用品呢?
设计制作一个笔筒需要解决哪些问题呢?怎样确定笔筒的大小?
五、师小结:下课铃响起,老师希望在座的各位同学能够应用本节课所学知识制作出的笔筒送给你最喜爱的人。
六、板书设计:
圆 柱 的 表 面 积
圆柱的侧面积=底面周长高
s = c h
圆柱的表面积=圆柱的侧面积+底面积2
步的几何知识概念,空间想象力的基础上进行教学的。本节课的教学目标是通过教学培养学生的合作意识和从生活实践中探求知识的学习品质;使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱体侧面积和表面积;培养学生观察、操作、概括的能力。教学的重、难点是圆柱体侧面积计算方法的推导。
教学设计意图:对于《圆柱的表面积》的教学,以往我都是在第一课时《圆柱的认识》的教学中推导出圆柱侧面积的公式,然后在第二课时《圆柱的表面积》教学时,要求学生在教师的指令下进行操作,将圆柱的侧面展开得到一个长方形,再比较两者之间的关系,从而推导出侧面积公式,然后通过一系列的练习来加深巩固,课堂的教学设计以练笔的形式进行教学,但这样的教学学生的学习效果不明显,容易把求表面积中所应用到的公式混淆在一起,而且这种教学手段学生是在老师的牵引下被动学习,不利于学生创造性思维的发展,局限了学生应用已有知识去解决问题的能力。今天我再教学《圆柱的表面积》,如何让学生充分运用已有的知识经验和基本技能,用自己的思维方式去尝试解决新问题,构建新的知识,这是本节课教学设计的灵魂。
教学反思:
我首先解决的是“商标纸的面积就是圆柱的侧面积”,再进而启发学生想到“如何把商标纸拿下来”,学生自然就想到“用剪或其他方法”,探究的方向准确后,我则放手让学生去发挥,去操作,留给学生大量的思维空间。学生在活动中,会随着操作的不同而有不同的发现,个性化的精彩随之绽放!中国有句古话就是:给你点颜色,你就开染坊!我觉得确实是的,我们的学生就是这样:你给他一个探究的空间,他就会回馈你一个意想不到的惊喜,还你以一幅精彩的画面!“天高任鸟飞,海阔凭鱼跃”,只有为学生的思维提供足够的时间和空间,才能让学生“如鱼得水”,让学生的精彩得以释放,让学生的潜能得以发挥,让学生的智慧充分展示,让我们的课堂永远充满生命和活力!
《圆柱的表面积》课堂实录
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。