电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

《立方根》教学设计

2024-06-052

《立方根》教学设计(精选10篇)

《立方根》教学设计 篇1

  教材分析

  《立方根》是义务教育课程标准实验教科书人教版版八年级(上)第十三章《实数》第二节.本节内容安排了1个学时完成.主要是通过对立方根与平方根的比较与归类,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能(如知道一个数的立方根的意义,会用根号表示一个数的立方根,掌握立方根运算,掌握求一个数的立方根的方法和技巧)外,还需要让学生感受类比的思想方法,为今后的学习打下基础.

  学情分析

  在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上.在学生对数的立方根概念及其唯一性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题.

  教学目标

  知识与技能目标

  1.了解立方根的概念,初步学会用根号表示一个数的立方根.

  2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.

  3.了解立方根的性质----唯一性.

  4.区分立方根与平方根的不同.

  5.分清两个互为相反数的立方根的关系,即

  5.渗透特殊---一般的数学思想方法

  过程与方法目标

  1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.

  2.在学习了平方根的基础上,学生经历用类比的'方法学习立方根的有关知识,领会类比思想.

  3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.

  情感与态度目标:

  1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.

  2. 学生通过对实际问题的解决,体会数学的实用价值.

  教学重点和难点

  重点:立方根的概念及求法.

  难点:立方根的求法,立方根与平方根的联系及区别.

  教学过程

  本节内容教学法为:类比法。

《立方根》教学设计 篇2

  一、教学目标:

  1、通过实例经历立方根概念的产生过程。

  2、了解立方根的概念,会用根号表示。

  3、了解开立方与立方互为逆运算,会用立方运算求立方根。

  二、教学的重点和难点:

  重点:;立方根的概念和开立方运算。

  难点:例2第(2)题涉及两种开方运算的混合运算,基础较差的学生容易混淆,是本节课的难点。

  三、教学过程:

  ㈠创设情境、引入新知

  我以学生们比较熟悉的魔方引入。

  提出问题:

  ① 平常的生活中,同学们有玩过魔方吗?

  ② 一个三阶魔方第一层有多少个立方体?

  ③ 它一共由多少个小立方体组成的?

  ④ 由8个小立方体组成的是几阶魔方你知道吗?64个小立方体?

  引出立方根的定义。

  ㈡启发诱导、探究新知

  1、立方根的定义:一般地,一个数的立方等于a,这个数就叫做a的立方根,也叫做a的三次方根,

  2、立方根的表示方法:3

  a

  根指数

  根号

  被开方数

  3、读做:三次根号

  ㈢勤于实践、应用新知

  1、例1:求下列各数的立方根:

  (1)125 (2) -27 (3) (4)- 0.064 (5) 0

  师给出(1)(2)两小题的解法步骤,(3)(4)(5)小题由学生板演之后:

  观察并思考:一个数的立方根的个数有几个?

  一个数的立方根的.符号与这个数的符号存在什么关系?

  得出事实:一个正数有一个正的立方根,一个负数有一个负的立方根,零的立方根是零。

  2、开立方的定义:求一个数的立方根的运算,叫做开立方

  3、探究平方根与立方根的异同点

  正数零负数

  1 0 -1

  平方根

  立方根

  仔细看一看,大胆说一说:

  不同点: ①正数和负数的平方根与立方根的个数不同

  ②表示平方根和立方根的符号不同

  相同点: ①0的平方根、立方根都是0

  ②求平方根、立方根的过程都是一种逆运算。

  4、明辨是非

  1.判断下列说法是否正确,并说明理由:

  (1) 的立方根是

  (2)算术平方根和立方根都等于本身的数只有0

  (3)-8的立方根是-2,但-8没有平方根

  (4) 4的平方根是±2,但4没有立方根

  (5)互为相反数的两个数的立方根也互为相反数

  注意:①举例时要注意特殊数:1,0,-1

  ②举例的数要有代表性

  ㈣提炼升华、巩固新知

  1、帮忙纠错:

  ②由216个小立方体能组成几阶魔方呢?

  ③把一个长、宽、高分别为50cm,2cm,8cm的长方体铁块溶化后锻造成一个立方体铁块,问造成的立方体的棱长是多少cm?(损耗忽略不计)

  ㈤课堂小结、完善新知

  我们可以提出哪些问题?

  (1)它表示什么意思?

  (2)计算的结果是多少?

  ……

  ㈥布置作业:

  (1)课堂作业本3.3

  (2)课本剩余作业题

  (3)提高题

《立方根》教学设计 篇3

  这一节课,是依据苏科版新课程实验教材,八年级数学上册第四章实数,第二节《立方根》的内容设计的。本节内容承接了《平方根》的教材编排模式,与平方根一节一起给学生建立‘开方’的运算模式,为下一节《实数》概念的建立和运算模式的建立打基础。所以,说本节课具有‘承前启后’的作用,应当是合适的。

  说课标

  数学课程标准对“实数”一章中关于本节知识的要求是:①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。②了解立方与乘方会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。因而,本节确立的教学目标,在知识技能方面要求了解立方根的概念,用三次根号表示一个数的立方根。方法方面用类比法学习立方根及开立方运算。情态价值方面则发展求同存异思维。

  (一)学习目标:

  1 、知识目标:

  (1)理解并掌握立方根的概念,会用符号表示一个数的立方根。

  (2)能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。

  (3)理解并掌握正数、负数、0的立方根的特点。

  (4)区分立方根与平方根的不同。

  2 、能力目标:

  (1)通过学习立方根,培养学生理解概念并用定义解题的能力。

  (2)通过用类比的方法探寻出立方根的概念、表示方法及运算。

  (3)通过经历探索和合作交流,归纳总结出平方根与立方根的异同。

  (二)学习重、难点:

  1、学习重点:立方根的概念和求法。

  2、学习难点:理解立方根的性质;比较立方根与平方根的.异同。

  说教学法分析

  当前高效课堂的主流就是培养学生的能力,使学生学会学习,学会解决实际问题。在学习过程中让学生自主探索、观察猜测、合作交流、分析推理、归纳总结,充分体现学生的主体地位,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

  说教学重点

  了解立方根的概念性质,会用概念解题。

  说教学难点

  应用时的符号问题

  教具准备

  鉴于需要类比教学,容量大,因此采用多媒体课件教学

  说教学流程

  在教学过程中,我采用班班通辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  1、创设情境复旧导新

  在课堂的引入上采用了一个求立方根的实际应用问题,已知体积,求正方体的棱长。由实际应用问题引入学生易于接受。体现了数学源于生活。

  再对已学过的相似运算---平方根进行复习,为接下来与立方根进行比较打下基础。初步体会类比思想

  2、启发诱导探索新知

  首先出示学习目标,让学生明白本节课我要学什么,怎样学,达到什么要求。接下来结合导学案和教材,导读自学,自主探究。设计意图:学生自学教材通过自学感悟理解新知,体现了学生的自主学习意识。

  最后,我通过三个活动将新知细化

  活动一:立方根的概念

  设计意图:使学生学会“文字语言”与“符号语言”这两种表达方式。整堂课充分发挥学生的主体作用,真正获取知识,解决问题。

  活动二:立方根的性质

  这是本节的一个难点。考虑到这个结论与平方根的相应结论不同,采用了先启发学生思考的办法,安排一个口答题,求一些具体数的立方根,在学生经过观察、思考并有了一些感性认识之后,自己总结出有关正数、0、负数立方根的特点,其后,通过合作探究学生归纳总结出平方根与立方根的异同。强调:用根号式子表示立方根时,根指数不能省略;以及立方根的唯一性。

  3、引导探究延伸新知

  活动三:求一个数的立方根

  (1)表示各数的立方根(定义的理解)

  (2)求下列各式的值(概念、性质、公式的综合运用)

  设计意图:组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果。使学生从中体会到从特殊到一般的数学思想,同时,让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

  4、归纳小结巩固新知

  设计意图:引导学生对知识要点进行总结,梳理学习思路。

  5、课堂达标拓展延伸

  设计意图:此环节体现出课堂的价值不仅是让学生学会知识,检验新知学习效果,而且培养学习能力,提升素质,达到了兵教兵,兵强兵的目的。

  说板书设计

  立方根

  1、一个数a的立方根可以表示为:

  读作:三次根号a,其中a是被开方数,3是根指数,不能省略。

  2、立方根的性质:

  (1)正数的立方根是正数;

  (2)负数的立方根是负数;

  (3)0的立方根是0。

  3、比较立方根与平方根的异同

  4、黑板右边学生板演、展示。

《立方根》教学设计 篇4

  一、说教材:

  求数的平方根和立方根的运算是数学的基本运算之一,在根式运算、解方程及几何图形解法等问题中经常要用到。学习立方根的意义在于:

  (1)它有着广泛应用,因为空间形体都是三维的,关于有关体积的计算经常涉及开立方。

  (2)立方根是奇次方根的特例,就像平方根是偶次方的特例一样,立方根对进一步研究奇次方根的性质具有典型意义。

  二、说目标

  1、能说出开立方、立方根的定义,记住正数、零、负数的立方根的不同结论;能用符号 表示a的立方根,并指出被开方数、根指数,会正确读出符号,知道开立方与立方互为逆运算。

  2、能依据立方根的定义求完全立方数的立方根。教学重点是:立方根相关概念的理解和求法。在教学中突出立方根与平方根的对比,弄清两者的区别与联系,这样做既有利于巩固平方根的概念,又便于加

《立方根》教学设计

《立方根》教学设计(精选10篇)《立方根》教学设计 篇1  教材分析  《立方根》是义务教育课程标准实验教科书人教版版八年级(上)第...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?