电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

三角形

2024-06-054

三角形(通用12篇)

三角形 篇1

  活动目标:

  1、通过认识、操作和游戏活动,使幼儿初步了解三角形的基本特征,激发幼儿对图形的兴趣,并学会目测分类。

  2、发展幼儿的手工操作能力和思维的敏捷性。

  活动准备:

  1、三角形教具、三角形拼图学具人手一套,圆形、三角形、正方形的头饰每人一个,相应的实物若干。

  2、运用三角形、圆形和正方形等几何图形组成画布置,用几何图形积木作幼儿的椅子    

  活动组织:

  1、出示三角形平面娃娃,引导幼儿学习兴趣,指导幼儿观察、分析,启发幼儿说出并记住图形名称和基本特征。

  2、请大班幼儿扮演三角形娃娃,由他向大家介绍自己的朋友(形状与三角形相同的实物),然后让幼儿帮助三角形娃娃找朋友,巩固对三角形的认识。

  3、出示用三角形拼成的各种物体,引导幼儿观察这些物体是哪些几何图形组成的。

  4、用大小不同的三角形拼成各种图案,鼓励幼儿大胆想象,并粘在作业纸上,然后把作品 挂在活动室里作装饰,教师和幼儿一起欣赏。

  活动延伸: 鼓励幼儿回家以后用小棍继续练习拼图。

三角形 篇2

  活动目标:

  1、通过认识、操作和游戏活动,使幼儿初步了解三角形的基本特征,激发幼儿对图形的兴趣,并学会目测分类。

  2、发展幼儿的手工操作能力和思维的敏捷性。。

  活动准备:  1、三角形教具、三角形拼图学具人手一套,圆形、三角形、正方形的头饰每人一个,相应的实物若干。

  2、运用三角形、圆形和正方形等几何图形组成画布置,用几何图形积木作幼儿的椅

  子。

  活动组织:

  1、出示三角形平面娃娃,引导幼儿学习兴趣,指导幼儿观察、分析,启发幼儿说出并记住图形名称和基本特征。

  2、请大班幼儿扮演三角形娃娃,由他向大家介绍自己的朋友(形状与三角形相同的实物),然后让幼儿帮助三角形娃娃找朋友,巩固对三角形的认识。

  3、出示用三角形拼成的各种物体,引导幼儿观察这些物体是哪些几何图形组成的。

  4、用大小不同的三角形拼成各种图案,鼓励幼儿大胆想象,并粘在作业纸上,然后把作品挂在活动室里作装饰,教师和幼儿一起欣赏。

  活动延伸:鼓励幼儿回家以后用小棍继续练习拼图。

三角形 篇3

  一、教学目标 

  1.使学生进一步理解相似比的概念,掌握的性质定理1.

  2.学生掌握综合运用的判定定理和性质定理1来解决问题.

  3.进一步培养学生类比的教学思想.

  4.通过相似性质的学习,感受图形和语言的和谐美

  二、教法引导

  先学后教,达标导学

  三、重点及难点

  1.教学重点:是性质定理1的应用.

  2.教学难点 :是的判定1与性质等有关知识的综合运用.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、常用画图工具.

  六、教学步骤 

  [复习提问]

  1.三角形中三种主要线段是什么?

  2.到目前为止,我们学习了的哪些性质?

  3.什么叫相似比?

  [讲解新课]

  根据的定义,我们已经学习了的对应角相等,对应边成比例.

  下面我们研究的其他性质(见图).

  建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

  性质定理1:对应高的比,对应中线的比和对应角平分的比都等于相似比

  ∽ ,

  ,

  教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据的性质得到的,这种综合运用判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.

  分析示意图:结论→∽(欠缺条件)→∽(已知)

  ∽ ,

  BM=MC,

  ∽ ,

  以上两种情况的证明可由学生完成.

  [小结]

  本节主要学习了性质定理1的证明,重点掌握综合运用的判定与性质的思维方法.

  七、布置作业 

  教材P241中3、教材P247中A组3.

三角形 篇4

  相似三角形的性质教学示例1

  (第1课时)

  一、教学目标 

  1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

  2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

  3.进一步培养学生类比的教学思想.

  4.通过相似性质的学习,感受图形和语言的和谐美

  二、教法引导

  先学后教,达标导学

  三、重点及难点

  1.教学重点:是性质定理1的应用.

  2.教学难点 :是相似三角形的判定1与性质等有关知识的综合运用.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、常用画图工具.

  六、教学步骤 

  [复习提问]

  1.三角形中三种主要线段是什么?

  2.到目前为止,我们学习了相似三角形的哪些性质?

  3.什么叫相似比?

  [讲解新课]

  根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

  下面我们研究相似三角形的其他性质(见图).

  建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

  性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比

  ∽ ,

  ,

  教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.

  分析示意图:结论→∽(欠缺条件)→∽(已知)

  ∽ ,

  BM=MC,

  ∽ ,

  以上两种情况的证明可由学生完成.

  [小结]

  本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.

  七、布置作业 

  教材P241中3、教材P247中A组3.

  八、板书设计 

三角形 篇5

  点击此处下载

  一题多解的“解”,若当作解法,即为一道题有多种解法,但数学中把解又当作结果,所以也可理解为一道题有多种结果.通常人们是以第一种解释为多,这里笔者想借此谈点教学解斜三角形时的一些新想法.

  解斜三角形,就是利用三角形的已知元素,求出未知元素的过程.其原理是正弦定理.条件必须满足3个,就是在斜三角形三角三边个元素中,必须已知其中的三个,而已知三个角时,三角形不确定,所以三个条件中至少要有一条边.这样我们可以把已知条件分为三种类型:1、已知三边.由定理可知,要用余弦定理开解;2、已知两角一边.因为三角形的三个内角和是180°,所以实际是已知三角一边,由定理可知,不管是已知夹边还是对边,用正弦定理都可以解;3、已知两边一角.这种类型要注意.由定理可知,若是已知夹角要用余弦定理来解.经过这样的分析,我们可以进行总结并归纳为口诀:“三边必定用余弦,还有两边夹一角;正弦两边一对角,双角必定用正弦.”

  有了定理,有了口诀,只是初步掌握.请看例一:在△ABC中,已知∠A=45°,a=2,b=2,求∠B.简解为: 。例二:在 中,已知 求 ,简解为: 且 或 。以上两例,同样是正弦定理,却存在着一解或两解的问题,按照“大边对大角,小边对小角”的原则,例一是已知大边对大角,求小边的对角,只能有一解,而例二是已知小边对小角,求大边的对角,则有锐角和钝角两种结果.这种“一题多解”的问题因该特别小心,不能出现漏解或是增解的情况.在斜三角中,已知三边,已知两角一边和已知两边一夹角时,三角形都是唯一确定的;一有已知两边一对角时,才有可能出现一解、两解或是无解的情况.这里“大边对大角”的原则起着决定性的作用.

  有了定理,有了口诀,有了原则,还要能灵活运用各种不同的解法,以求达到“一题多解”.请看例三:在△ABC中,已知∠A=30° 求c。简解为:由正弦定理得: 且 或 。当 ,则 ,当 则 所以, 。这是已知两边一对角的情形,按口诀应该用正弦定理如上所解,但是用余弦定理也是可行的.简解为:由公式 ,代入得 ,化简 , ,所以,或 =8或 =4,此法不仅简洁且不会漏解,值得重视.

三角形 篇6

  教学目标:

  1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

  2.培养学生观察能力、动手操作能力和类推迁移的能力.

  3.培养学生勤于思考,积极探索的学习精神.

  教学重点:理解三角形面积计算公式,正确计算三角形的面积.

  教学难点:理解三角形面积公式的推导过程.

  教学过程

  一、激发

  1.出示平行四边形

  提问:

  (1)这是什么图形? 计算平行四边形的面积我们学过哪些方法?学生总结并回答前面学过的内容。(数表格的方法,割补法,直接测量底和高进行计算等等)

  师总结:平行四边形面积=底×高

  (2)底是2厘米,高是1.5厘米,求它的面积。

  (3)平行四边形面积的计算公式是怎样推导的?

  2.出示三角形。三角形按角可以分为哪几种?

  3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

  教师:今天我们一起研究“三角形的面积”(板书)

  二、指导探索

  (一)推导三角形面积计算公式。

  1、师出示情境图,提出问题:三角形的面积你会求吗?图中的几位同学它们在讨论什么?你有什么好办法吗?(学生讨论,拿出学具分小组讨论)

  分析:如果我们不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?

  2、三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。(学生自己发现规律,教师出示场景二)

  3、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  4、用直角三角形推导

  (1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。

  (2)拼成的这些图形中,哪几个图形的面积我们不会计算?

  (3)利用拼成的长方形和平行四边形,怎样求三角形面积?

  (4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?(引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。)

  5、用锐角或者钝角三角形推导。

  (1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。

  (2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,(教师边演示边讲述边提问)对照拼成的图形,你发现了什么?(学生自主拼图)引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。

  (3)两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。

  问题:通过刚才的操作,你又发现了什么?

  引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的面积的一半

  6、归纳、总结公式。

  (1)通过以上实验,同学们互相讨论一下,你发现了什么规律?

  (2)汇报结果。

  引导学生明确:

  ①两个完全一样的三角形都可以拼成一个平行四边形。

  ②每个三角形的面积等于拼成的平行四边形面积的一半。

  ③这个平行四边形的底等于三角形的底。

  ④这个平行四边形的高等于三角形的高。

  7、提问并思考,强化推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以 2”?(强化理解推导过程)

  三角形面积=底×高÷2

  8、教学字母公式。

  引导学生回答:如果用s表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:

  (二)、应用

  1、教学例题:

  红领巾分底是 100cm,高 33厘米,它的面积是多少平方厘米?

  ①读题。理解题意。

  ②学生试做。指名板演。

  ③订正。提问:计算三角形面积为什么要“除以2”?

  2、完成做一做

  三、质疑调节

  (一)总结这一节课的收获,并提出自己的问题.

  (二)教师提

三角形

三角形(通用12篇)三角形 篇1  活动目标:   1、通过认识、操作和游戏活动,使幼儿初步了解三角形的基本特征,激发幼儿对图形的兴趣...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?