2023年一元一次方程教案设计 一元一次方程教案(模板13篇)
教学目标:
2、知道“元”和“次”的含义;
能力目标:
1、培养学生准确运算的能力;
2、培养学生观察、分析和概括的能力;
3、通过解方程的教学,了解化归的数学思想.。
德育目标:
1、渗透由特殊到一般的辩证唯物主义思想;
2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;
3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;
重点:
2、最简方程的解法;
难点:正确地解最简方程。
教学方法:引导发现法。
教学过程。
一、旧知识的复习:
1.什么叫等式?等式具有哪些性质?
2.什么叫方程?方程的解?解方程?
二、新知识的教学:
(1)只含有一个未知数;
(2)未知数的次数都是一次。
想一想:
(2)怎样求最简方程(其中是未知数)的解?
三、巩固练习。
1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:
3、课堂小结:
四、本节学习的主要内容。
2、最简方程(其中是未知数);
3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
能力目标:
1、培养学生准确运算的能力;
2、培养学生观察、分析和概括的能力;
3、通过解方程的教学,了解化归的数学思想.
德育目标:
1、渗透由特殊到一般的辩证唯物主义思想;
2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;
3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;
2、最简方程的解法;
正确地解最简方程。
引导发现法。
1.什么叫等式?等式具有哪些性质?
2.什么叫方程?方程的解?解方程?
(1)只含有一个未知数;
(2)未知数的次数都是一次。
想一想:
(2)怎样求最简方程(其中是未知数)的解?
1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:
3、课堂小结:
2、最简方程(其中是未知数);
3、解最简方程的主要思路和解题的关键步骤及依据。
(二).过程与方法。
通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.
(三).情感态度与价值观。
开展探究性学习,发展学习能力.
二、重、难点与关键。
(一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程.
(三).关键:抓住实际问题中的数量关系建立方程模型.
三、教学过程。
(一)、复习提问。
1.叙述等式的两条性质.
2.解方程:4(x-)=2.
解法1:根据等式性质2,两边同除以4,得:
x-=。
两边都加,得x=.
解法2:利用乘法分配律,去掉括号,得:
4x-=2。
两边同加,得4x=。
两边同除以4,得x=.
(二)、新授。
公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.
分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台.
题目中的相等关系为:三年共购买计算机140台,即。
前年购买量 去年购买量 今年购买量=140。
列方程:x 2x 4x=140。
如何解这个方程呢?
2x表示2x,4x表示4x,x表示1x.
根据分配律,x 2x 4x=(1 2 4)x=7x.
这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0.
下面的框图表示了解这个方程的具体过程:
x 2x 4x=140。
合并。
7x=140。
系数化为1。
x=20。
由上可知,前年这个学校购买了20台计算机.
上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.
例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.
分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.
问:本题中相等关系是什么?
答:甲组人数 乙组人数 丙组人数=60.
解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:
2x 3x 5x=60。
合并,得10x=60。
系数化为1,得x=6。
所以2x=12,3x=18,5x=30。
答:甲组12人,乙组18人,丙组30人.
请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60.
(三)、巩固练习。
1.课本第89页练习.
(1)x=3.
(2)可以先合并,也可以先把方程两边同乘以2.
具体解法如下:
解法1:合并,得( )x=7。
即2x=7。
系数化为1,得x=。
解法2:两边同乘以2,得x 3x=14。
合并,得4x=14。
系数化为1,得x=。
(3)合并,得-2.5x=10。
系数化为1,得x=-4。
2.补充练习.
(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)。
解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个.
列方程3x 2x=32。
合并,得8x=32。
系数化为1,得x=4。
黑色皮块为43=12(个),白色皮块有54=20(个).
(2)设全书共有x页,那么第一天读了(x 2)页,第二天读了(x-1)页.
本问题的相等关系是:第一天读的`量 第二天读的量 还剩23页=全书页数.
列方程:x 2 x-1 23=x.
四、课堂小结。
初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和.这是一个基本的相等关系.
合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0.
五、作业布置。
1.课本第93页习题3.2第1、3(1)、(2)、4、5题.
2.选用课时作业设计.
合并同类项习题课(第2课时)。
1.(1)3x 3-2x=7;(2)x x=3;。
(3)5x-2-7x=8;(4)y-3-5y=;。
(5)-=5;(6)0.6x-x-3=0.
二、解答题.
3.甲、乙两地相距460千米,a、b两车分别从甲、乙两地开出,a车每小时行驶60千米,b车每小时行驶48千米.
(1)两车同时出发,相向而行,出发多少小时两车相遇?
4.甲、乙二人从a地去b地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达b地,求a、b两地之间的距离.
答案:。
二、2.705人,设育红小学1995年学生人数为x人,列方程320=x-150.
3.(1)4小时,设出发后x小时相遇,列方程60x 48x=460.
(2)3小时,设b车开出后x小时两车相遇,列方程60 60x 48x=460.
4.3千米,设a、b两地间的距离为x千米,-=.
5.1分钟,设经过x分钟两人首次相遇,列方程550x-250x=400.
本节课的教学设计中坚持以学生发展为本。通过丰富的情境,活跃的讨论,将教材中提供的几个与生活密切相关的实际问题,抽象出相等的数量关系,建立数学模型。启发学生逐层深入,多方位、多角度地思考问题,加强知识的综合运用,尊重个体差异,帮助学生在自主探索与合作交流的过程中获得数学活动经验,提高灵活解决实际问题的能力。
教学内容分析。
本节课是人民教育出版社的义务教育课程标准实验教科书《数学》七年级上第二章第四节。列一元一次方程解决生产生活中的一些实际问题,是初中阶段应用数学知识解决实际问题的开端,同时也是今后学习列其它方程或方程组解决实际问题的基础。
教学对象分析。
学生在小学学习时就已接触过有关实际问题中的盈亏问题和省钱问题,掌握了盈亏问题和省钱问题的基本关系,并会解决一些简单问题,同时,在本章前阶段的学习中学习了一元一次方程的解法及列一元一次方程解实际问题建模的思想,但由于学生的认知起点和学习能力存在差异,部分学生对于抽象数学模型可能感到困难,因此,教学时要注意学生的学习倾向,挖掘积极因素,力求不同的学生获得不同的发展。
知识与技能目标。
进一步掌握生活中实际问题的方程解法,能找出实际问题中已知数、未知数和全部的等量关系,列一元一次方程加以解决。
过程与方法目标。
主动参与数学活动,通过问题的`对比体会数学建模思想,形成良好的思维习惯。
情感、态度和价值观目标。
经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,激发应用数学的热情。
教学重点:1.体验用多种方法解决实际问题的过程。
教学难点:体会实际问题的生活情节,将数量关系抽象概括成为方程模型。
教学关键:调动全体学生的积极性,让学生参与实践,在实践中提问、交流、合作、探索,正确地列出方程,解决问题。
利用多媒体课件引入问题,让学生在实际背景下发现和理解数学问题。
问题1:销售中的盈亏:
分析:两件衣服共卖了120(=60x2)元,是盈是亏要看这家商店买进这两件衣服时花了多少钱,如果进价大于售价就亏损,反之就盈利。
小组讨论:
问题2:用那种灯省钱。
分析:问题中有基本的等量关系。
费用=灯的售价 电费。
2.掌握
2023年一元一次方程教案设计 一元一次方程教案(模板13篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。