电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

整式的乘法第一课时优秀教案(3篇)

来源:互联网作者:editor2024-07-241

整式的乘法第一课时优秀教案篇1

总体说明:

完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结。同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用。因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义。

本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用。

一、学生学情分析

学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础。

学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力。

二、教学目标

知识与技能:

(1)让学生会推导完全平方公式,并能进行简单的应用。

(2)了解完全平方公式的几何背景。

数学能力:

(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力。

(2)发展学生的数形结合的数学思想。

情感与态度:

将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”。

三、教学重难点

教学重点:1、完全平方公式的推导;

2、完全平方公式的应用;

教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;

2、完全平方公式结构的认知及正确应用。

四、教学设计分析

本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习。

第一环节:学生练习、暴露问题

活动内容:计算:(a 2)2

设想学生的做法有以下几种可能:

①(a 2)2=a2 22

②(a 2)2=a2 2a 22

③正确做法;

针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?

活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:

(a 2)2=a2 22,如果不将这种定式思维,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔。

第二环节:验证(a 2)2=a2–4a 22

活动内容:(a 2)2=(a 2)•(a 2)=a2 2a 2a 22

活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”。

第三环节:推广到一般情况,形成公式

活动内容:(a b)2=(a b)(a b)=a2 ab ab b2=a2 2ab b2

活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐。

第四环节:数形结合

活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?

展示动画,用几何图形诠释完全平方公式的几何意义。

学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)

活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想。

第五环节:进一步拓广

活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab b2

方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab b2=a2–2ab b2

方法2:(a–b)2=[a (–b)]2=a2 2a(–b) (–b)2=a2–2ab b2

活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用。

第六环节:总结口诀、认识特征

活动内容:比较两个公式的共同点与不同点:(a b)2=a2 2ab b2

(a–b)2=a2–2ab b2

特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;

②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)

口诀:首平方,尾平方,首尾相乘的两倍在中央。

活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误。

第七环节:公式应用

活动内容:例:计算:①(2x–3)2;②(4x )2

解:①(2x–3)2=(2x)2–2•(2x)•3 32=4x2–12x 9

整式的乘法第一课时优秀教案(3篇)

整式的乘法第一课时优秀教案篇1总体说明:完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结。同时,完全平方公式的推导...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?