高三数学教案(4篇)
高三数学教案篇一
函数研究两个变量的对应关系,而极限则是研究自变量变化时,因变量的变化趋势。
一.极限思想―割圆术:用圆内接正多边形面积逼近圆面积
圆内接正六边形面积记为a1
十二 a2
二十四 a3
62n1 annn
a1,a2,,an,构成一列有次序的数――数列.n→大,ana(圆面积)。不论n如何大,只要n取定, ana.设想n,即内接正多边形边数无限增加,在这个过程中,内接正多边形的面积无限接近于圆,同时an→确定的数值(即圆的面积)数学上就称为的极限(n)。
极限方法是高数中一个基本方法。
二.数列的极限定义――xnfn,d为正整数。
1.第一种定义:当项数n无限增大时,如果xn无限接近于一个确定的常数a,则称当n无限增大时xn的极限是a.2.“n”def 当0,不论它多么小,总n0,对于nn的一切xn,恒有xna成立,则limxna.如果数列没有极限,就称是发散的。
n *1.是任意给定(任意性)
*2.n与有关,随给定而选定,一般地越小,n越大,n大到何种程度,取决于使xna成立时xn的项数n的取值,定义中仅要求n有关,并不一定要找出最小的自然数n.*3几何意义:nn时,所有的xn都落在a,a内,即数列只有有限个(最多只有n个)在区间之外。*4利用定义不能直接求极限。
三.极限的证明
1例1 证明lim(1)1
n1n1111,n1 证:0,要使11n1n1111取n[1],则当nn时,有1, 1n1n1 ∴lim(1)1
n1n limxna的证明步骤:
n 1)给定0
2)要使xna,解出nn()3)取n,即n.4)当nn时,有xna
5)下结论。n!例2 证明 limn0
nnn!证:0,要使n0<,nn!nn111只要n0=
nnnnnn!11取 n[],则当nn=[]时,有n0
nn!∴limn0 nn 例3 n1n0 n1n
证:0,要使只要111,n2
4n1n2n1取n[2]
则当nn时有n1n, 4∴limnn1n0.2n1 例4 设q1,证明等比数列1,q,q,,qn1,的极限是0。
证:01∵xn0qln取自然对数,解得∴n1,lnqlnn1],则当nn时有xn0q 取n[1lnq limqnn10。
四.收敛数列的性质
1.极限的唯一性
定理1 数列不能收敛于两个不同的极限。2.有界性
(1)有界概念:数列xn,若m0,对一切xn有xnm,称xn有界。
(2)收敛数列的有界性
定理2 如果数列xn收敛,那么数列xn一定有界。
若xn无界xn发散。xn有界,则不一定收敛。
如xn
高三数学教案(4篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


