分式求导公式 分式方程的解法(5篇)
分式求导公式 分式方程的解法篇一
八年下数学学案
3.3分式的加减法
(二)【学习目标】:
1.掌握异分母的分式加减法的法则.2.会进行分式的通分.一 课前预习:
(一)、自主探究
1、做一做
①
异分母的分式相加减:
。2通分: 4111abbcba;;;.② ③ ④2aababbc3a2ba(1)yx1111153,;(3),;(2),;(4),.2x3y24xya24a2x3x3xy(xy)
2通分时,应先确定各个分式的分母的公分母:先确定公分母的,取各个分母系数的 ;再取各分母所有因式的最高次幂的积.二、合作探究:
1、计算:
113xxx2411;③用两种方法计算:()..①;②2a4a2x2x2xx3x
3④根据规划设计,某市工程队准备在开发区修建一条长1120m的盲道.由于采用新的施工方式 , 实际每天修建盲道的长度比原计划增加10m, 从而缩短了工期.假设原计划每天修建盲道 x m ,那么
(1)原计划修建这条盲道需要多少天?实际修建这条盲道用了多少天?
(2)实际修建这条盲道的工期比原计划缩短了几天? 本溪县第二中学
八年下数学学案
三、达标检测:(1)
(5)11bb11324(2)2(3)2(4)uvaa2cd3cd2x4x216ba124142;(6).(7)(8)
a21a2a3a2ba11a2m242m
四、作业:
必做题:课本习题 选做题: 1.化简:2x65(x2).x2x2
2.一件工作,甲单独做需x小时完成,乙单独做需主y小时完成,甲乙两人合作完成这件工作需要多少时间?
★
3、小明在一条山路上来回走动,上山时的速度为4千米/时,下山的速度为6千米/时,则小明的平均速度为多少千米/时?
五、课后反思:
分式求导公式 分式方程的解法篇二
16.2.2分式的加减
(二)曾红云
一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算.二、重点、难点
1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法
教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减.有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.三、例、习题的意图分析
1. p21例8是分式的混合运算.分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2. p22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入
1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.五、例题讲解
(p21)例8.计算
[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算(1)(x2x2x2x1x4x42)4xx
[分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边..解:(=[x2x2x2x1x4x42)4xx x2x(x2)x1(x2)2]x(x4)=[(x2)(x2)x(x2)222x(x1)x(x2)x(x4)2]x(x4)
=x4xxx(x2)1x4x422
=
2(2)xxyyxyxyxy444x222
xy[分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.解:xxyxxyy2xyxyxyxy444x222xy4 xyx222=y2xy2xy(xy)(xy)xyxy2222222
=(xy)(xy)
=xy(yx)(xy)(xy)xyxy
=
六、随堂练习计算(1)(x2x2342x122)x22x(2)(21a2aabbba)(1a1b)
(3)(a2a4)(a2)
分式求导公式 分式方程的解法篇三
分式
(二)【考点精析】
一、分式方程:分母里含有未知数的方程叫分式方程。
◆ 分母中是否含有未知数是分式方程与整式方程的根本区别,分母中含未知数就是分式方程,否则就为整式方程。
二、解分式方程的一般步骤:
◆ 方程两边都乘以最简公分母,约去分母,化为整式方程。◆ 列整式方程,求得整式方程的根。
◆ 验根:把求得的整式方程的根代入a,使最简公分母等于0的根是增根,否则是原方程的根。◆ 确定原分式方程解的情况,即有解或无解。
三、增根的概念:在分式方程去分母转化为整式方程的过程中,可能会增加使原分式方程中分式的分母为零的根,这个根叫原方程的增根,因此列分式方程一定要验根。
四、列分式方程解简单的实际问题
(1)列分式方程解简单的实际问题的方法步骤简单地可分为:设、找、列、解、检、答六个步骤. ◆设 弄清题意和题目中的数量关系,用字母(如x
分式求导公式 分式方程的解法(5篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


