电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

2023年分式教案(四篇)

来源:互联网作者:editor2024-07-281

分式教案篇一

上海市虹口高级中学

韩玺

一、教学内容分析

简单的分式不等式解法是高中数学不等式学习的一个基本内容.对一个不等式通过同解变形转化为熟悉的不等式是解不等式的一个重要方法.这两类不等式将在以后的数学学习中不断出现,所以需牢固掌握.二、教学目标设计

1、掌握简单的分式不等式的解法.2、体会化归、等价转换的数学思想方法.三、教学重点及难点

重点 简单的分式不等式的解法.难点 不等式的同解变形.四、教学过程设计

一、分式不等式的解法

1、引入

某地铁上,甲乙两人为了赶乘地铁,分别从楼梯和运行中的自动扶梯上楼(楼梯和自动扶梯长度相同),如果甲的上楼速度是乙的2倍,他俩同时上楼,且甲比乙早到楼上,问甲的速度至少是自动扶梯运行速度的几倍.设楼梯的长度为s,甲的速度为v,自动扶梯的运行速度为v0.于是甲上楼所需时间为

s,乙上楼所需时间为vsvv02.由题意,得ss.vvv02整理的12.v2v0v

由于此处速度为正值,因此上式可化为2v0v2v,即v2v0.所以,甲的速度应大于自动扶梯运行速度的2倍.2、分式不等式的解法 例1 解不等式:x12.3x2 1

解:(化分式不等式为一元一次不等式组)

5x1x1x1x12200 03x23x23x23x2x1x1x10x102x1或x不或或2233x203x20xx33存在.所以,原不等式的解集为22,1,即解集为,1.33注意到

x103x2x103x20或x103x2x10,可以简化上述解法.3x20另解:(利用两数的商与积同号(为一元二次不等式)

aa0ab0,0ab0)化bb5x1x1x1x12200 03x23x23x23x23x2x1022x1,所以,原不等式的解集为,1.33由例1我们可以得到分式不等式的求解通法:

(1)不要轻易去分母,可以移项通分,使得不等号的右边为零.(2)利用两数的商与积同号,化为一元二次不等式求解.一般地,分式不等式分为两类:

fx(1); 0(0)fxgx0(0)gx(2)

fxfxgx00.0(0)gxgx0 2

[说明]

解不等式中的每一步往往要求“等价”,即同解变形,否则所得的解集或“增”或“漏”.由于不等式的解集常为无限集,所以很难像解无理方程那样,对解进行检验,因此同解变形就显得尤为重要.例2 解下列不等式

x10.x523.(2)35xx82.(3)2x2x3x10x1x501x5,解(1)原不等式x5(1)所以,原不等式的解集为1,5.(2)原不等式215x715x73000 35x35x5x315x75x305x3037x155x3573x,155所以,原不等式的解集为73,1552.2(3)分母:x2x3x1110,则

原不2等式x822xxx23x4x 2x226x2或x1,2,.21,所以,原不等式的解集为2 3

例3 当m为何值时,关于x的不等式mx13x2的解是(1)正数?

(2)是负数?

解:mx13x2 m3xm6(*)当m3时,(*)0x9x不存在.当m3时,(*)x(1)原

m6.m3方

程的解

数x(m60(mm3)原

m6程

)m6或m3.的解

数2xm60(mm3m6)6m3.所以,当m,63,时,原方程的解为正数.当m6,3时,原方程的解为负数.四、作业布置

选用练习2.3(1)(2)、习题2.3中的部分练习.五、课后反思

解分式不等式关键在于同解变形.通过同解变形将其转化为熟悉的不等式来加以解决,这种通过等价变形变“未知”为“已知”的解决问题的方法是教学的重点也是难点,需在课堂教学中有所强调.整个教学内容需让学生共同参与,特别是在“同解变形”这一点上,应在学生思考、讨论的基础上教师、学生共同进行归纳小结.

分式教案篇二

《 9.3分式的乘除法(1约分)》教案

教学目标

1.使学生明确分式的约分概念和理论依据,掌握约分方法;

2.通过与分数的约分作比较,学习分式的约分,渗透“类比”的思想方法.

教学重点和难点

重点:分式约分的方法.

难点:分式约分时分式的分子或分母中的因式的符号变化.

教学过程设计

一、导入新课

问:下面的等式中右式是怎样从左式得到的?这种变换的理论根据是什么?

答:(1)式中的左边分式的分子与分母都除以2a2b2,得到右式,这里a≠0,b≠0.(2)式中的左边分式的分子与分母都除以(x y),得到右式,这里(x y)≠0.这种变换的根据是分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.

本性质.

问:什么是分数的约分?约分的方法是什么?约分的目的是什么?

答:把一个分数化为与它相等,但是分子、分母都比较小的分数,这种运算叫做约分.对于一个分数进行约分的方法是:把分子、分母都除以它们的公约数(1除外).约分的目的是把一个分数化为既约分数.分式的约分和分数的约分类似,下面讨论分式的约分.

二、新课

我们观察:

(1)中左式变为右式,是把左式中的分子与分母都除以2a2b2得到的,它是分式的分子与分母的公因式.

(2)中左式变为右式,是把左式中的分子与分母都除以它们的公因式(x y)而得到的.

第1页

像(1),(2)中分式的运算就是分式的约分.即把一个分式的分子与分母的公因式约去,叫做分式的约分.

一个分式的分子与分母没有公因式时,这个分式叫做最简分式.

把一个分式进行约分的目的,是使这个分式变为最简分式.

为了把上述分式约分,应该先确定分式的分子与分母的公因式,那么分式的分子与分母的公因式是什么?

答:因为分式的分子与分母都是单项式,取分子、分母中相同因式的最低次幂和分子、分母的系数的最大公约数,把它们的积作为这个分式的分子与分母的公因式.

指出:分子或分母的系数是负数时,一般先把负号移到分式本身的前边.这就同时改变了分式本身与分子或分母的符号,所以分式的值不变.

例2 约分:

分析:(1),(2)的分子、分母都是多项式,并且都能分解因式,可以先分解因式,再分别确定分子与分母的公因式.

请同学说出解题思路.

答:分式的分子、分母都是多项式,可以先分别因式分解,约分,把分式化为最简分式,再求值.

当x=45时,请同学概括分式约分的步骤.

第2页

答:

1.如果分式的分子、分母是单项式,约去分子、分母的系数的最大公约数和相同因式的最低次幂.

2.如果分式的分子与分母都是多项式时,可先把分子、分母分解因式,然后约去分子与分母的公因式.

3.当分式的分子或分母的系数是负数时,应先把负号提到分式的前边.

请同学思考一个问题:将分式约分时,约去分式中的分子与分母的公因式,为什么分式的值不变?

答:因为所给的分式都是有意义的,也就是说,分母的值不等于零.而分式的分子与分母的公因式一定是分式的分母的一个因式,根据分式的基本性质,约分后分式的值不变.

三、课堂练习

1.约分:

2.指出下列分式运算中的错误,并把它改正.

四、小结

把一个分式的分子与分母的公因式约去,叫做分式的约分.

分式进行约分的目的是要把这个分式化为最简分式.

如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

分式约分中注意正确运用乘方的符号法则,如

x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

五、作业

1.约分:

第3页

2.约分:

3.先约分,再求值:

4页

分式教案篇三

分式的概念: 一般的,用a,b表示两个整式,ab就可以表示成式子abab的形式.如果b中含有字母,就叫做分式.其中,a叫做分式的分子,b叫做分式的分母.分式和整式通称为有理式.

注意:

(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;(3)当分子等于零而分母不等于零时,分式的值才是零.

分式的相关概念:

把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分. 一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.

一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.

分式的基本性质:

分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:

分式的变号法则:

分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如:

abababababambmambm(其中m是不等于零的整式).

分式的运算法则

1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:

abcdacbd;

abcdabdcadbc.

2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:

abnabnn(n为整数).

3、分式的加减法则:

①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:

acbcabc;

②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:

abcdadbcbd.

例、计算x2x1x4x3x6x5x8x7.

分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” .

解:原式x11x1x31x3x51x5x71x7

1111111 x1x3x5x711 x3x5x711 1x1 2x1x3x5x7x1x3x5x72

2x5x72x1x3

分式教案篇四

第1章分式

1.1分式

第1课时分式

1.理解分式的定义,能够根据定义判断一个式子是否是分式.

2.能写出分式存在的条件,会求分式的值为0时字母的取值范围.(重难点)

3.能根据字母的取值求分式的值.(重点)

4.能用分式表示现实情境中的数量关系.(重点)

知识模块一分式的概念

【合作探究】

教材p2动脑筋.

代数式,有什么共同点?

归纳:分式的概念:一般地,如果一个整式f除以一个非零整式g(g中含有__字母__),所得商叫作分式,其中f是分式的分子,g是分式的分母,g≠0.【自主学习】

下列式子中是分式的有:__②⑥⑦__.

①;②;③;④3x2;⑤;⑥4x+;

⑦-.知识模块二分式存在以及分式的值为0的条件

【自主学习】

阅读教材p3例1和例2.【合作探究】

当x取什么值时,分式的值:(1)不存在;(2)等于0?

解:(1)当分母x-2=0时,即x=2时,分式的值不存在;(2)当分子x+1=0,即x=-1时,分式的值等于=0.归纳:分式存在的条件是__g≠0__;分式不存在的条件是__g=0__.分式的值为0的条件是__f=0且g≠0__.练习:

求下列条件下分式的值.

(1)x=3;(2)x=-2.解:(1)当x=3时,==;

(2)当x=-2时,==.活动1小组讨论

例1列代数式表示下列数量关系,并指出哪些是整式?哪些是分式?

(1)甲每小时做x个零件,他做80个零件需多少小时;

(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是多少千米/时,轮船的逆流速度是多少千米/时;

(3)x与y的差除以4的商是多少.

解:(1);分式.(2)a+b,a-b;整式.(3);整式.

例2当x取何值时,分式的值存在?当x取何值时,分式的值为零?

解:当的值存在时,x2-4≠0,即x≠±2;当的值为0时,有2x-5=0且x2-4≠0,即x=.【点拨】分式的值存在的条件:分式的分母不能为0,分式的值不存在的条件:分式的分母等于0.分式值为0的条件:分式的分子等于0,但分母不能等于0.分式的值为零一定是在有意义的条件下成立的.

活动2跟踪训练

1.下列各式中,哪些是分式?

①;②;③;④;⑤x2.解:①③是分式.

2.当x取何值时,分式的值存在.

解:3x-2≠0,即x≠时,存在.

3.求下列条件下分式的值.

(1)x=1;(2)x=-1.解:(1)当x=1时,=-;(2)当x=-1时,=-.活动3课堂小结

1.分式的定义及根据条件列分式.

2.分式的值存在的条件,以及分式值为0的条件.

第2课时分式的基本性质

1.理解并掌握分式的基本性质.(重点)

2.能运用分式的基本性质约分,并进行简单的求值运算.(重难点)

知识模块一分式的基本性质

【合作探究】

教材p4说一说.

填空,并说一说下列等式从左到右变形的依据.

(1)==;(2)==

与分数类似,=,=成立吗?

归纳:分式的分子与分母都乘__同一个非零整式__,所得分式与原分式__相等__.即对于分式,有=(h≠0).

【自主学习】

根据分式的基本性质填空:

(1)=;(2)=;

(3)=

知识模块二分式的约分

【自主学习】

阅读教材p5例4,p6例5.【合作探究】

1.==,公因数是__2__;==,公因式是__4abc__.

2.==

归纳:把一个分式的分子与分母的公因式约去(即分子与分母都除以它们的公因式),叫作分式的约分.

像、这样,分式的分子分母没有__公因式__,这样的分式叫作最简分式.

练习:

1.约分.

(1);

解:原式==;

(2).解:原式==.2.下面变形是否正确?为什么?如果不正确应该怎样改正?

=.解:不正确.正确变形如下:==.3.先约分,再求值:,其中m=1,n=3.解:==.当m=1,n=3时,原式==-.活动1小组讨论

例约分.

(1);(2);(3).解:(1)=-;(2)=;(3)==.【点拨】约分的过程中注意完全平方式(a-b)2=(b-a)2的应用.像(3)这样的分子分母是多项式,应先分解因式再约分.

活动2跟踪训练

1.约分.

(1);(2).解:(1)=;

(2)==-.2.先约分,再求值.

(1),其中m=1,n=2;

(2),其中x=2,y=4.解:(1)===1;

(2)====-.活动3课堂小结

1.分数的基本性质.

2.约分、化简求值.

1.2分式的乘法和除法

第1课时分式的乘法和除法

1.理解分式的乘、除法运算法则.(重点)

2.会进行分式的乘除运算.(重难点)

知识模块一用类比思想探究分式乘除法运算法则

【合作探究】

类比分数的运算:(1)×;(2)÷(u≠0)怎样计算呢?

(1)·=;(2)÷=·=.归纳:分式的乘除法法则.

__分式乘分式,把分子乘分子、分母乘分母分别作为积的分子、分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.__

【自主学习】

计算.

(1)·;(2)(x+2)÷;

(3)·;(4)÷.解:(1)原式==;

(2)原式=(x+2)·=;

(3)原式=;

(4)原式=.知识模块二需要分解因式才能约分的分式乘除法

【自主学习】

阅读教材p9例2,学习解题方法.

【合作探究】

1.计算:(1)·;(2)÷(x-y).

解:(1)原式=·=;

(2)原式=·=.2.先化简,再求值:÷·,其中a=-1.解:原式=··=,当a=-1时,原式==1.活动1小组讨论

例1计算.

(1)·;(2)÷.解:(1)原式===;

(2)原式=·==.例2计算.

(1)·;(2)÷.解:(1)原式=·==;

(2)原式=·=·==.【点拨】整式与分式运算时,可以把整式看成分母是1的分式.注意变换过程中的符号.

活动2跟踪训练

1.计算:

(1)·;(2)÷8x2y;(3)-3xy÷.解:(1)原式==;

(2)原式=·==;

(3)原式=-3xy·=-=-.【点拨】(2)和(3)要把除法转换成乘法运算,然后约分,运算结果要化为最简分式.

2.计算:

(1)÷;

(2)÷(x+3)·.解:(1)原式=·=·==;

(2)原式=··=··=-.【点拨】分式的乘除要严格按法则运算,除法必须先换算成乘法,如果分式的分子或分母是多项式,那么就把分子或分母分解因式,然后约分,化成最简分式.运算过程一定要注意符号.

活动3课堂小结

1.分式的乘、除法运算法则.

2.分式的乘、除法运算法则的运用.

第2课时分式的乘方

1.理解分式乘方的运算法则.(重点)

2.熟练地进行分式乘方及乘、除、乘方混合运算.(重难点)

知识模块一探究分式乘方法则

【合作探究】

教材p10做一做.

1.()2=×=;()3=××=

2.类比分数的乘方计算.

()2=×=,()3=××=,()10呢?

归纳:()n=×××……×,\s\do4(n个))=.(其中n为正整数)

即:分式的乘方就是把__分子、分母分别乘方__.

【自主学习】

1.计算:

(1)()4;(2)()3.解:(1)原式==;

(2)原式==.2.判断下列各式是否成立,并改正:

(1)()2=;错,;

(2)()2=;错,;

(3)()3=;错,-;

(4)()2=.错,.知识模块二分式的乘除、乘方混合运算

【自主学习】

阅读教材p10例4,注意计算过程.

【合作探究】

计算:

(1)()2·()3;

(2)()4·()3÷()5.解:(1)原式=·(-)=-;

(2)原式=··(-)=-.活动1小组讨论

例1计算:

(1)()3;(2)()3.解:(1)()3=;(2)()3==

【点拨】分式的乘方运算将分式的分子、分母分别乘方,再根据幂的乘方进行运算.

例2计算:

(1)m3n2÷()3;(2)(-)2÷()3·()3.解:(1)m3n2÷()3=m3n2÷=m3n2·=n5;

(2)(-)2÷()3·()3=÷·=··=.【点拨】分式混合运算,要注意:(1)化除法为乘法;(2)分式的乘方;(3)约分化简成最简分式.

活动2跟踪训练

1.计算:

(1)·÷;

(2)÷·;

(3)()2÷(a-1)·.解:(1)原式=··=;

(2)原式=··=-;

(3)原式=··=.2.计算.

(1)()3;(2)()2÷·()3.解:(1)原式==-;

(2)原式=··=-.3.化简求值:÷()2·,其中a=,b=-3.解:化简结果是ab,求值结果为-.【点拨】化简过程中注意“-”.化简中,乘除混合运算顺序要从左到右.

活动3课堂小结

1.分式乘方的运算.

2.分式乘除法及乘方的运算方法.

1.3整数指数幂

1.3.1同底数幂的除法

1.理解同底数幂的除法法则.(重点)

2.熟练进行同底数幂的除法运算.(重难点)

知识模块一探究同底数幂的除法法则

【合作探究】

教材p14动脑筋.

怎样计算呢?==(210).类似地,设a≠0,m,n是正整数,且m

2023年分式教案(四篇)

分式教案篇一上海市虹口高级中学韩玺一、教学内容分析简单的分式不等式解法是高中数学不等式学习的一个基本内容.对一个不等式通过同解变形...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
0.031s