电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

2023年怀尔斯费马大定理证明过程(三篇)

来源:互联网作者:editor2024-07-281

怀尔斯费马大定理证明过程篇一

近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。

300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。

费尔马大定理的由来

故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。

1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。”

费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n y^n=z^n的方程,当n大于2时没有正整数解。

费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

他酷爱数学,把自己所有的业余时间都用于研究数学和物理。由于他思维敏捷,记忆力强,又具备研究数学所必须的顽强精神,所以,获得了丰硕的成果,使他跻身于17世纪大数学家之列。

艰难的探索

起初,数学家想重新找到费尔马没有写出来的那个“美妙证法”,但是谁也没有成功。著名数学家欧拉用无限下推法证明了方程 x^3 y^3=z^3和x^4 y^4=z^4不可能有正整数解。

因为任何一个大于2的整数,如果不是4的倍数,就一定是某一奇素数或它的倍数。因此,只要能证明n=4以及n是任一奇素数时,

2023年怀尔斯费马大定理证明过程(三篇)

怀尔斯费马大定理证明过程篇一近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?