2023年二自由度工业机器人 3自由度工业机器人机构简图(5篇)
二自由度工业机器人 3自由度工业机器人机构简图篇一
introduction to robotics
mechanics and control
机器人学入门
力学与控制
系
别: 机械与汽车工程系 专学业生
名姓
称: 机械设计制造及其自动化 名: 郭仕杰
学
号:
06101315 指导教师姓名、职称: 贺秋伟 副教授
完成日期 2014 年2 月28日 introduction to robotics
mechanics and control
abstract this book introduces the science and engineering of mechanical branch of the robot has been in several classical field main related fields such as mechanics, control theory, computer this book, chapter 1 through 8 topics ranging from mechanical engineering and mathematics, chapter 9 through 11 cover control theory of material, and twelfth and 13 may be classified as computer science addition, this book emphasizes the computational aspects of the problem;for example, each chapter it mainly mechanical has a brief section book is used to teach the class notes introduction to robotics, stanford university in the fall of 1983 to first and second versions have been through 2002 in use from 1986 the third version can also benefit from the revised and improved due to feedback from many to all those who modified the author's book is suitable for advanced undergraduates the first grade students have contributed to the dynamics and linear algebra course in advanced language program in a basic course of addition, it is helpful, but not absolutely necessary, let the students finish the course control purpose of this book is a simple introduction to the material, intuitive ically, does not need the audience mechanical engineer strict, although much of the material is from the the stanford university, many electrical engineers, computer scientists, mathematicians find this book very we only on the important part to main content
1、background
the historical characteristics of industrial automation is popular during the period of rapid as a cause or an effect of automation technology, period of this change is closely linked to the world of industrial robots, can be identified in a unique device 1960's, with the development of computer aided design(cad)system and computer aided manufacturing(cam)system, the latest trends, automated manufacturing technology is the leading industrial automation through another transition, its scope is still the northern america, machinery and equipment used in early 80's of the 20th century, the late 80's of the 20th century a short then, the market more and more(figure 1.1), although it is affected by economic fluctuations, all the 1.2 shows the robots were installed in a large number of annual world industrial y, the number of japan's report is different from other areas: they count the number of machine of robot in other parts of the world are not considered robot(instead, they would simply be considered “factory machines”).therefore, the reported figures for the japanese of the main reason for the growth in the use of industrial robots is that they are falling .1.3 shows that, in the last century 90's ten years, robot prices dropped although human labor the same time, the robot is not only cheaper, they become more effective and faster, more accurate, more we factor these quality adjusted to the number, the use of robots to decrease the cost of even than their price tag cost-effective in the robot they become, as human labor to become more expensive, more and more industrial work become robot automation is the most important trend to promote the industrial robot market second trend is, in addition to the economic, as robots become more can become more tasks they can do, may have on human workers engaged in dangerous or rial robots perform gradually get more complex, but it is still, in 2000, about 78% installation welding or material handling robot in usa robot.a more challenging field, industrial robots, accounted for 10% book focuses on the dynamics and control of the most important forms of industrial robot, is the industrial robot is sometimes ent, as shown in figure 1.4 is always included, and cnc milling machine(nc)is usually difference lies in the programmable complex place if a mechanical device can be programmed to perform a variety of applications, it may be an industrial is the part of a limited class of tasks are considered fixed the purpose of this difference, do not need to be discussed;the basic properties of most materials suitable for various programmable general, the mechanical and control research of the mechanical hand is not a new science, but a collection of the theme from the “classic” ical engineering helps to machine learning methods for static and dynamic mathematical description of movement of the tool manipulator space supply and other e design evaluation tool to realize the motion and force the desired algorithm control ical engineering technology applied in the design of electrical engineering technology for sensor applied in design and industrial robot interface sensor, are programmed to perform the required task of basic computer science and the s:
figure 1.1: shipments of industrial robots in north america in millions of us
dollars
figure 1.2: yearly installations of multipurpose industrial robots for 1995-2000 and
forecasts for 2001-2004
figure 1.3: robot prices compared with human labor costs in the 1990s
figure 1.4:the adept 6 manipulator has six rotational joints and is popular in many sy of adept technology, inc.2、control of mechanical arm in the study of robots, 3d spatial position we constantly to the object of objects are all manipulator links, parts and tools, it deals, and other objects in the robot's a coarse and important level, these objects are described by two attributes: the position and course, a direct interest in the topic is the attitude in which we represent these quantities and manipulate their order to describe the human body position in space and direction, we will always highly coordinate system, or frame, rigid we continue to describe the position and orientation of the reference frame of the coordinate framework can be used as a reference system in the expression of a body position and direction, so we often think of conversion or transformation of the body of these properties from one frame to another 2 chapter discusses the convention methods of dealing with job descriptions discussed method of treating and post convention described positioning and manipulation of coordinate system the quantity and mathematics developed skills relevant to the position and rotation of the description and is very useful in the field of rigid tics is the science of sports, the movement does not consider the force which resulted in the scientific research of kinematics, a position, velocity, acceleration, and the location variable high order derivative(with respect to time of all or any of the other variables(s)).therefore, the kinematics of manipulator is refers to the geometric and temporal characteristics of all manipulator comprises nearly rigid connection, which is the relative movement of the joint connection of adjacent nodes are usually instrument position sensor, so that adjacent link is a relative position the case of rotating or rotary joint, the displacement is called the joint robots including sliding(or prism)connection, in which the connection between the relative displacement is a translation, sometimes called the joint manipulator has a number of independent position variables are specified as the mechanism to all parts of is a very general term, any example, a four connecting rod mechanism has only one degree of freedom(even with three members of the movement).in the case of the typical industrial robots, because the robots is usually an open kinematic chain, because each joint position usually define a variable, the node is equal to the number of degrees of free end of the link chain consisting of the manipulator end ing to the application of robot, the end effector can be a starting point, the torch, electromagnet, or other usually by mechanical hand position description framework description tool, which is connected to the end effector, relative to the base, the base of the mobile the study of mechanical operation of a very basic problem is the is to compute the position of mechanical static geometric problems in hand terminal ically, given a set of joint angles, the forward kinematics problem is to compute the position and orientation relative to the base of the tool mes, we think this is a change from the joint space is described as a manipulator position that cartesian space description.“this problem will be discussed in the 3 the 4 chapter, we will consider the inverse kinematics problems are as follows: the end effector position and direction of the manipulator, computing all possible joint angle, can be used to achieve the position and direction of a given.(see figure 1.7.)this is a practical problem of manipulator is is quite a complex geometry problem, the conventional solution in tens of thousands of humans and other biological systems time every a case like a robot simulation system, we need to create computer control algorithm can make the some ways, the solution to this problem is the most important element in the operating is quite a complex geometry problem, the conventional solution in tens of thousands of humans and other biological systems time every a case like a robot simulation system, we need to create computer control algorithm can make the some ways, the solution to this problem is the most important element in the operating can use this problem as a mapping on 3d descartes ”position“ space ”position“ in the robot joint need will occur when the 3d spatial objects outside the specified of this kind of algorithm some early robot, they just transfer(sometimes by hand)required for the position, and then be recorded as a common set of values(i.e., as a position in joint space for later playback).obviously, if the playback position and motion pattern recording and joint of the purely robot in cartesian space, no algorithm for the joint space is r, the industrial robot is rare, the lack of basic inverse kinematics inverse kinematics problem is not a simple forward kinematics of equation of motion is nonlinear, their solution is not always easy(or even possible in a closed form).at the same time, the existing problems of solutions and multiple solutions study of these problems provides an appreciation of what the human mind nervous system is achieved when we, there seems to be no conscious thought, object movement and our arms and hands lator is a solution of the presence or absence of a given definition of work area.a solution for the lack of means of mechanical hands can not reach the desired position and orientation, because it is in the manipulator working addition to static positioning problem, we can analyze the robot y, the analysis in the actuator velocity, it is convenient to define a matrix called the jacobi matrix of the speed of jacobi matrix specified in descartes from the velocity mapping space and joint space.(see figure 1.8.)this mapping configuration of the manipulator changes the natural some point, called a singularity, this mapping is not to make the phenomenon are important to the understanding of the mechanical hand designers and s:
figure 1.5: coordinate systems or ”frames“ are attached to the manipulator and to
objects in the 1.6: kinematic equations describe the tool frame relative to the base frame
as a function of the joint 1.7: for a given position and orientation of the tool frame, values for the joint variables can be calculated via the inverse 1.8: the geometrical relationship between joint rates and velocity of the end-effector can be described in a matrix called the jacobian.3、symbol symbol is always the problems in science and this book, we use the following convention: first: usually, uppercase variables vector or lowercase :tail buoy use(such as the widely accepted)indicating inverse or transposed :tail buoy not subject to strict conventions, but may be that the vector components(for example, x, y, z)or can be used to describe the pbo / p in a position of the :we will use a lot of trigonometric function, we as a cosine symbol angle e1 can adopt the following methods: because the e1 = ce1 = the vector sign note general: many mechanics textbook treatment number of vector at a very abstract level and often used vector is defined relative to expression in different coordinate most obvious example is, in addition to vector is relative to a given or known a different frame of is usually very convenient, resulting in compact structure, elegant example, consider the angular velocity, connected in series with the last body ° w4 'four rigid body(such as the manipulator links)relative to the fixed seat to the angular velocity vector addition, angular velocity equation at last link we can write a very simple vector:
however, unless the information is relative to a common coordinate system, they cannot be concluded, therefore, although elegant, equation(1.1) of the ”work“.a case study of the manipulator, such statements,(1.1)work coordinate system hidden bookkeeping, which is often we need to ore, in this book, we put the symbol reference frame vectors, we don't and carrier, unless they are in the same coordinate this way, we derive expressions for computing numerical solution, ”bookkeeping" problem can be directly applied to the y the robot is a typical electromechanical integration device, it uses the latest research results of machinery and precision machinery, microelectronics and computer, automation control and drive, sensor and information processing and artificial intelligence and other disciplines, with the development of economy and all walks of life to the automation degree requirements increase, the robot technology has been developing rapidly, the emergence of a variety of robotic utility of robot products, not only can solve many practical problems difficult to solve by manpower, and the promotion of industrial automation present, the research and development of robot relates to many aspects of the technology, the complexity of system structure, development and development cost is generally high, limiting the application of the technology, to some extent, therefore, the development of economic, practical, high reliability of robot system with a wide range of social significance and economic on the design of mechanical structure and drive system, the kinematics and dynamics of the cleaning robot is tics analysis is the basis of path planning and trajectory control of the manipulator, the kinematics analysis, inverse problem can complete the operation of space position and velocity mapping to drive space, using the homogeneous coordinate transformation method has been the end of manipulator position and arthrosis transform relations between the angle, geometric analysis method to solve the inverse kinematics problem of manipulator, provides a theoretical basis for control system robot dynamics is to study the relationship between the motion and force of science, the purpose of the study is to meet the need of real-time control, this paper use straightaway language introduced the related mechanical industrial robots and control knowledge for us, pointing the way for our future research is a very complicated learning, in order to go into it, you need to constantly learn, the road ahead is long, i shall search.机器人学入门
力学与控制
摘要
本书介绍了科学与工程机械操纵。这一分支学科的机器人已经在几个经典的领域为基础的。主要的相关的领域是力学,控制理论,计算机科学。在这本书中,第1章通过8个主题涵盖机械工程和数学,第9章通过11个盖控制理论材料,第12和13章可能被归类为计算机科学材料。此外,这本书强调在计算方面的问题;例如,每章这方面主要以力学有一个简短的章节计算考虑。这本书是从课堂笔记用来教机器人学导论,斯坦福大学在1983的秋天到1985。第一和第二版本已经通过2002在从1986个机构使用。第三版也可以从中受益的使用和采用的修正和改进由于许多来源的反馈。感谢所有那些谁修正了作者的朋友们。这本书是适合高年级本科生一年级的课程。如果学生已经在静力学的一门基础课程有助于动力学和线性代数课程可以在高级语言程序。此外,它是有帮助的,但不是绝对必要的,让学生完成入门课程控制理论。本书的目的是在一个简单的介绍材料,直观的方式。具体地说,观众不需要严格的机械工程师,虽然大部分材料是从那场。在斯坦福大学,许多电气工程师,计算机科学家,数学家发现这本书很易读。在这里我们仅对其中重要部分做出摘录。
主要内容
1、背景
工业自动化的历史特点是快速变化的时期流行的方法。无论是作为一个原因或一个效果,这种变化的时期自动化技术是紧密联系在一起的世界经济。利用工业机器人,成为可识别在1960年代的一个独特的装置,随着计算机辅助设计(cad)系统和计算机辅助制造(cam)系统的特点,最新的趋势,制造业的自动化过程。这些技术是领先的工业自动化 通过另一个过渡,其范围仍然是未知的。在美国北部,在早期有机器设备多采用世纪80年代,其次是上世纪80年代后期一个简短的拉。自那时起,市场越来越多的(图1.1),虽然它是受经济波动,是所有市场。图1.2显示的机器人被安装在大数每年世界各国的工业区。值得注意的是,日本的报告数量有所不同从其他地区一样:他们算一些机器的机器人在世界的其他地方都没有考虑机器人(而不是,他们会简单地认为是“工厂的机器”)。因此,该报告的数字为日本有些夸大。
在工业机器人的使用增长的一个主要原因是他们正在下降成本。图1.3表明,在上世纪90年代的十年中,机器人的价格下降了虽然人类的劳动成本增加。同时,机器人不只是越来越便宜,他们变得更有效更快,更准确,更灵活的。如果我们的因素这些质量调整成数,使用机器人的成本下降甚至比他们的价格标签更快。在他们的工作机器人变得更具成本效益的,作为人类劳动继续变得更加昂贵,越来越多的工业工作成为机器人自动化的候选人。这是最重要的趋势推动了工业机器人的市场增长。第二个趋势是,除了经济,随着机器人变得更能成为他们能够做的更多以上的任务,可能对人类工人从事危险的或不可能的。工业机器人执行逐步得到更多的应用复杂的,但它仍然是,在2000年,大约78%安装在美国进行焊接或材料搬运机器人的机器人。
一个更具挑战性的领域,工业机器人,占10%装置。这本书着重于力学和最重要的形式控制的工业机器人,机械手。到底什么是工业机器人是有时辩论。设备,如图1.4所示是总是包括在内,而数控(nc)铣床通常不。区别在于的可编程的复杂的地方如果一个设备机械设备可以被编程为执行各种应用程序,它可能是一个工业机器人。这是最机部分有限的一类的任务被认为是固定的自动化。为目的本文的区别,不需要讨论;大多数材料的基本性质适用于各种可编程机。
总的来说,其力学和控制机械手的研究不是一个新的科学,而只是一个收集的主题从“经典”的领域。机械工程有助于机器学习方法静态和动态的情况下。数学描述空间供应工具机械手的运动和其他属性。控制理论提供了工具以实现所期望的运动和力的应用评价算法设计。电气工程技术施加在传感器的设计电气工程技术施加在传感器的设计和工业机器人接口,与计算机科学的基础这些设备进行编程以执行所需任务。
附图:
图1.1在数以百万计的人在美国北部的工业机器人的出货量美元
图1.2 年安装的多用途的工业机器人1995-2000年和2001年至2004年预测
图1.3 机器人的价格与上世纪90年代的人类劳动成本的比较
图1.4 娴熟的6臂有六个转动关节(流行于众多制造行业)
2、力学和机械臂的控制
机器人的研究中,我们不断的关注对象的位置三维空间。这些对象是机械手的链接,零件和工具,它的交易,并在机器人的环境的其他对象。在一个粗而重要的水平,这些对象是由两个属性描述:位置和方向。当然,一个直接感兴趣的话题是态度在我们所代表的这些量和操纵他们的数学。
为了描述人体在空间中的位置和方向,我们将始终高度坐标系统,或框架,严格的对 象。然后我们继续相对于一些参考描述该帧的位置和方向坐标系统。任何框架可以作为一个参考系统内的表达一个身体的位置和方向,所以我们经常认为转化或改变身体的这些属性从一帧到另一个的描述。2章讨论了公约的方法处理与职位描述讨论了公约的方法处理与职位描述定位和操纵这些量与数学不同的坐标系统。发展良好的技能有关的位置和旋转的描述甚至在刚体机器人领域是非常有用的。
运动学是科学的运动,对运动不考虑力这导致它。在运动学的科学研究,一个位置,速度,加速度,和所有的高阶导数的位置变量(相对于时间或任何其他变量(s))。因此,机械手的运动学研究是指所有的运动的几何和时间特性。机械手包括近刚性连接,这是由关节连接允许相邻链接的相对运动。这些节点通常仪表有位置传感器,使邻近的链接是相对位置测量。在旋转或旋转接头的情况下,这些位移被称为关节角度。一些机器人包含滑动(或棱镜)连接,其中之间的联系相对位移是一个翻译,有时也被称为联合偏移量。机械手具有数独立的位置的变量会被指定为定位该机制的所有部分。这是一个总称,任何机制。为例如,一个四连杆机构只有一个自由度(即使有三运动的成员)。在典型的工业机器人的情况下,因为机器人通常是一个开放的运动链,因为每个关节的位置通常定义一个变量,节点的数目等于自由度。
在链接组成的机械手的末端执行器的自由端链。根据机器人的应用,末端执行器可以是一个抓手,焊枪,电磁铁,或其他装置。我们一般通过描述工具的框架描述的机械手的位置,这是连接到端部执行器,相对于底座,所对移动机械手的基础。在机械操作的研究一个非常基本的问题就是了运动学。这是计算的位置的静态几何问题机械手的末端定位。具体而言,给定一组关节角,正向运动学问题是计算位置和方向工具架相对于底座。有时,我们认为这是改变从关节空间描述为一个机械手位置的表示笛卡尔空间的描述。“这个问题将在3章探讨。在4章中,我们将考虑的逆运动学问题。这个问题提出了如下:给出了末端执行器的位置和方向机械手,计算所有可能的关节角度,可以用来实现这个给定的位置和方向。(见图1.7。)这是一个根本性的问题机械手的实际应用。这是一个相当复杂的几何问题,常规的解决在人类和其他生物系统时间每天成千上万。在一个案例像一个机器人仿真系统,我们需要创建的控制算法计算机可以使这个计算。在某些方面,这个问题的解决方案是在操作系统中最重要的元素。
这是一个相当复杂的几何问题,常规的解决在人类和其他生物系统时间每天成千上万。在一个案例像一个机器人仿真系统,我们需要创建的控制算法计算机可以使这个计算。在某些方面,这个问题的解决方案是在操作系统中最重要的元素。
我们可以把这个问题作为一个映射在三维笛卡尔的“位置”空间的“位置”在机器人的关节内的空间。这需要自然会出现每当目标外部三维空间指定的坐标。一些早期的机器人缺乏这种算法,他们只是转移(有时用手)所需的的位置,然后被记录为一组共同的值(即,作为一个位置关节空间)用于以后回放。显然,如果机器人用纯粹的模式记录和关节的位置和运动的播放,没有算法有关的关节空间的笛卡尔空间是必要的。然而,是罕见的工业机器人,缺乏基本的逆运动学算法。逆运动学问题不是简单的正向运动学一个。由 于运动方程是非线性的,他们的解决方案并不总是容易(甚至可能在一个封闭的形式)。同时,对存在的问题解和多解的出现。这些问题的研究提供了一个欣赏什么人的心灵神经系统是实现当我们,似乎没有有意识的思考,移动和我们的双臂和双手操作的对象。一个解的存在或不存在的定义工作区一个给定的机械手。一个解决方案的缺乏意味着机械手不能达到所需的位置和方向,因为它在机械手的外工作区。
除了处理静态定位问题,我们不妨分析机器人的运动。通常,在执行机构的速度分析,它是方便的定义一个矩阵的数量称为机械手的雅可比矩阵.指定的速度雅可比矩阵在笛卡尔从关节空间的速度映射空间。(见图1.8。)这种映射配置的自然变化机械手的变化。在某些点,称为奇点,这映射是不使转化。这一现象的理解是设计师和用户的重要机械手。
附图:
图1.5 坐标系统或“帧”连接到机械手环境中的物体
图1.6运动学方程描述刀具架相对于底座作为一个联合变量的函数
图1.7 对于一个给定的位置和方向的工具框架,值为关节变量可以通过逆运动学计算
图1.8 联合率和速度之间几何关系端部执行器可以在一个矩阵描述了所谓的雅可比矩阵
3、标识符号
符号一直是科学和工程问题。在这本书中,我们使用以下公约: 第一、通常,大写变量表示的向量或矩阵。小写的变量的标量。第二、尾标使用(如被广泛接受的)指示逆或转置矩阵。
第三、尾标不受严格的公约,但可能表明向量的组件(例如,x,y,z)或可用于述在pbo / p一个螺栓的位置。
第四、我们将使用许多三角函数,我们为一个余弦符号角e1可以采用下列方式:因
为e1 = ce1 = c1。
在一般的矢量符号注:许多力学教材处理矢量在一个非常抽象的层次上的数量和经常使用向量定义相对于在表达不同的坐标系统。最明显的例子是,除了向量是给定的或已知的相对于不同的参考系。这是通常很方便,导致结构紧凑,有优雅的公式。为例如,考虑角速度,在串联连接的最后一次身体°w4 '四刚体(如机械手的链接)相对的固定座链。由于角速度矢量相加,我们可以写一个非常简单的向量的最后环节的角速度方程:
然而,除非这些量是相对于一个共同的坐标表示系统,他们不能总结,所以,虽然优雅,方程(1.1)隐藏大部分的“工作”的计算。为研究个案机械手,这样的陈述,(1.1)隐藏簿记的工作坐标系统,这往往是我们需要实践的想法。因此,在这本书中,我们把符号参考框架向量,我们不要和载体,除非他们在同一坐标系统。在这种方式中,我们推导出的表达式,解决“记账”问题可直接应用于实际的数值计算。
机器人是典型的机电一体化装置,它综合运用了机械与精密机械、微电子与计算机、自动控制与驱动、传感器与信息处理以及人工智能等多学科的最新研究成果,随着经济的发展和各行各业对自动化程度要求的提高,机器人技术得到了迅速发展,出现了各种各样的机器人产品。机器人产品的实用化,既解决了许多单靠人力难以解决的实际问题,又促进了工业自动化的进程。目前,由于机器人的研制和开发涉及多方面的技术,系统结构复杂,开发和研制的成本普遍较高,在某种程度上限制了该项技术的广泛应用,因此,研制经济型、实用化、高可靠性机器人系统具有广泛的社会现实意义和经济价值。在完成机械结构和驱动系统设计的基础上,对物料抓取机械手运动学和动力学进行了分析。运动学分析是路径规划和轨迹控制的基础,对操作臂进行了运动学正、逆问题的分析可以完成操作空间位置和速度向驱动空间的映射,采用齐次坐标变换法得到了操作臂末端位置和姿态随关节夹角之间的变换关系,采用几何法分析了操作臂的逆向运动学方程求解问题,对控制系统设计提供了理论依据。机器人动力学是研究物体的运动和作用力之间的关系的科学,研究的目的是为了满足是实时性控制的需要,本文用通俗易懂的语言为我们介绍了工业机器人的相关力学与控制的知识,为我们以后的研究方向指明了道路。机器人的研究是一门非常复杂的学问,为了深入去探究它的方方面面,就需要不断的去学习,正所谓路漫漫其修远兮,吾将上下而求索。
二自由度工业机器人 3自由度工业机器人机构简图篇二
动态优化的一种新型高速,高精度的三自由度机械手
①
彭兰(兰朋)②,鲁南立,孙立宁,丁倾永
(机械电子工程学院,哈尔滨理工学院,哈尔滨 150001,中国)(robotics institute。harbin institute of technology,harbin 150001,p。r。china)
摘要
介绍了一种动态优化三自由度高速、高精度相结合,直接驱动臂平面并联机构和线性驱动器,它可以提高其刚度进行了动力学分析软件adams仿真模拟环境中,进行仿真模拟实验.设计调查是由参数分析工具完成处理的,分析了设计变量的近似的敏感性,包括影响参数的每道光束截面和相对位置的线性驱动器上的性能.在适当的方式下,模型可以获得一个轻量级动态优化和小变形的参数。一个平面并联机构不同截面是用来改进机械手的.结果发生明显的改进后的系统动力学仿真分析和另一个未精制一个几乎是几乎相等.但刚度的改进的质量大大降低,说明这种方法更为有效的。
关键词: 机械手、adams、优化、动力学仿真
0 简介
并联结构机械手(pkm)是一个很有前途的机器操作和装配的电子装置,因为他们有一些明显的优势,例如:串行机械手的高负荷承载能力,良好的动态性能和精确定位的优点等.一种新型复合3一dof臂的优点和串行机械手,也是并联机构为研究对象,三自由度并联机器人是少自由度并联机器人的重要类型。三自由度并联机器人由于结构简单,控制相对容易,价格便宜等优点,具有很好的应用前景。但由于它们比六自由度并联机器人更复杂的运动特性,增加了这类机构型综合的难度,因此对三自由度并联机器人进行型综合具有理论意义和实际价值。本文利用螺旋理论对三自由度并联机器人进行型综合,以总结某些规律,进一步丰富型综合理论,并为新机型的选型提供理论依据,以下对其进行阐述。
如图-1所示 机械手组成的平面并联机构(ppm)包括平行四边形结构和线性驱动器安装在ppm.两直接驱动电机c整合交流电高分辨率编码器的一部分作为驱动平面并联机械装置.线型致动器驱动的声音线圈发动机.这被认为是理想的驱动短行程的一部分.作为一个非换直接驱动类,音圈电机可以提供高位置敏感和完美的力量与中风的角色,高精密线性编码作为回馈部分保证在垂直方向可重复性。
另一方面,该产品具有较高的刚度比串行机械手,因为它的特点和低封闭环惯性转矩。同时,该系统可以克服了柔性耦合力学弹性、齿轮、轴承、被撕咬支持,连接轴和其他零件,包括古典驱动设备,因此该机械手是更容易得到动力学性能好、精度高。
图-1 3自由度的混合结构的机械手
当长度的各个环节的平面并联机时,构决定于运动学分析和综合[4-7],机械优化设计的首要任务,应加大僵硬、降低质量.关于几个参数模型.这是它重要和必要的影响,研究了各参数对模型表现以进一步优化。本文就开展设计研究工具,通过参数分析亚当斯,又要适当的方式来获得一个轻量级的优化和小变形系统。仿真模型
adams(automatic dynamic analysis 0f mechanical system)自动机械系统动力学分析是一个完美的软件,对机械系统动力学模拟可处理机制包括有刚性和灵活的部分,仿真模型可以创造出机械手的亚当斯环境 如图-2。oxyz是全球性的参考帧,并oxyz局部坐标系,两个直流驱动电机、交流和02m o1a表示,与线性驱动器ch被视为刚性转子转动惯量电机传动的120kg/cm2。大众的线性驱动器是1.5kg,连接ab、德、03f和lj被视为柔性体立柱、横梁gk,通用公司和公里,形成一个三角形,也被当作柔性传动长度的链接是决定提前运动学设计为ab =o3f = 7cm,de=ij=7cm,gk= 7cm,gm =11.66cm,= 8.338cm。其它维度,这个数字是01a = 02m =7cm,cb=cd=hj 2.5cm。ef=eg=jk= 3cm。
虽然总平面并联机构的运动都是在水平、垂直和水平刚度必须在竖向刚度特征通常低于水平僵硬,因为它的角色在垂直悬臂梁的截面尺寸计算每一束平面并联机构和相对位置的线性驱动器是两个非常僵硬的影响因素的系统。
运动支链可分为三类:“主动链(由驱动器赋予确定独立运动的支链。一般是单驱动器控制一个自由度的运动),从动链(不带驱动器、被迫作确定运动的支链。又分为以下两种:约束链:独立限制机构自由度的从动链。冗余链:重复限制机构自由度的从动链)复合链(有单驱动器、但限制一个以上的机构自由度的支链,实际是主动链与约束链的组合)-并联机构是由这几种支链用不同形式组合起来的。动链中的约束链除了可以提高机构刚度和作为测量链外,其更主要的作用是用来约束动平台的某一个或几个自由度,以使其实现预期的运动。
图-2 仿真模型 仿真模拟结果
在本节中,平均位移的末端是用来描述动态刚度,这是在不同的配置在不同的线性驱动器向前,从最初的位置的目的地,一般的竖向位移的机械手是作为目标来研究竖向刚度,平均差别的横坐标、纵坐标点之间有一个刚性数学模型,模型,作为目标来研究水平刚度。
并联机器人的构型设计即型综合是并联机器人设计的首要环节,其目的是在给定所需自由度和运动要求条件下,寻求并联机构杆副配置、驱动方式和总体布局等的各种可能组合。国内的许多学者正致力于这方面的研究,其中比较有代表性的有如下几种方法:”黄真为代表的约束综合法;杨廷力等人的结构综合法;代表的李代数综合法。以上各种方法自成体系,各有特点,都缺乏理论的完备性。本文提出添加约束法,是从限制自由度的角度出发,增加约束,去除不需要的自由度,因每条主动链只有一个驱动装置,让其控制一个自由度,其余自由度通过纯约束链去除,这样可以使主、从动运动链的作用分离,运动解耦,有利于控制。具有三自由度的并联机床,当采用条主动支链作为驱动时,机构就需要约束另三个自由度,通过选择无驱动装置的从动链来完成,则整个机构成为有确定运动的三自由度的并联机构。黄真等提出的约束综合法对完全对称的少自由度并联机器人机构进行了型综合,完全对称的支链结构相同,都属于复合链,每条支链除都有一个单驱动器,控制一个自由度外,还应约束一个以上自由度才能使机构的六个自由度全部受控,使机构有确定的运动。
2.1 截面效应
扭转变形位移的连结将会引起的,所以,扭转常数的横截面,重力是研究装系统来研究,采取扭转刚度的垂直切片lxx不变的各个环节和梁作为设计变量的变化,从 0.1 x 105mm4 与 3.5 x 105 mm4。
图-3 不断的效果在垂直变形扭转
图-3显示了平均位移与截面扭转常数末端的各个环节和梁,根据它的变化速率的环节,是最大的,ab是链接,lj依次分别gk梁和km有在竖向刚度性能。其他的仿真结果表明,水平位移之间的差异进行比较,结果表明该模型体育智力h和刚性模型变化小就改变了恒定不变的时候扭加载惯性力的线性驱动器,但是水平位移的变化,这意味着在这种模拟竖向变形的生产水平位移系统机械手。注意端面线性驱动器的主要原因是水平变形、线性驱动器机器人是由两个节点c和h.所以,我们计算了不同的z-coordinate摄氏度之间,如图所示,在图4-扭转常数的影响差别的链接德。其次是最有效的通用和连接梁,连接o3f,梁gk有效果。
因此,应采取ab和连接区段大扭常数的免疫力,竖向刚度较大并行扭转不变的链接德也使较少的均匀性,降低线性驱动器不可以降低水平变形。
图-4 在不影响扭不变
如图-
5、6所展示的影响是区域惯性转矩的设计变量是区域刚度和惯性转矩的各个环节和梁lz,图显示增加lw卡尔减少的速度高于垂直位移的不断增加ixx扭转。这个yxx ab、梁的链接,链接o3f是iyy三个主要因素决定了竖向刚度。
图-6 所示 链接的ab、梁公里,连接03f也是其中的三个主要因素决定的均匀性线性传动装置、不同的分析结果表明,izz效果好,具有至少两个垂直和水平刚度,这意味着这种结构,具有足够的水平,降低izz刚度的链接和增加iyy ab、梁的链接,链接o3f公里的好方法,优化系统。
图-5 瞬间的惯性效应对垂直位移
图-6 转动惯量不平衡的影响
2.2影响的线性驱动器的相对位置
线性执行器的惯性是主要载荷之一,在机械手的运动,不同的相对应的垂直位置产生不同的变形,图7显示了绝对平均的最终效应垂直位移时驱动马达以恒定的加速度旋转,我们可以看到,过低或过高的相对位置会造成比格变形,最好的位置是一对z = 24毫米的地方大概是从中间环节连接o3f到 ab.图-7
影响线性驱动器的相对位置
分析改进的机械手
根据上述模拟结果,所有改进的机械手的设计,时间如下:链接截面ab,de,lj 与30mm的基础和高度,10毫米的厚度;链接o3f和矩形空心梁与30mm的基础和高度工型钢,l0mm法兰和6mm网;梁竞,通用汽车与8mm的坚实基础和30mm高的矩形。
图-8 梯形运动姿态
图-9中回应的是机械手,相比之下,图-10中提高初始的反应,在其中所有的链接和机械手的矩形截面梁的坚实基础,用30毫米,高度的差异是曲线,c和h的曲线积分,二是垂直位移的末端,改进系统中最大位移0.7um最初的0.12um相比,争论的振动激励后仍停留在o.06um±0.15% s±o.05um相比的初始变形改善系统的初始小于前者具有较少的惯性,因为在相同的步伐不断加快,保持振动瓣膜差不多一样,它对这整个系统中来说,仍然改善系统的刚度,几乎相当于初始制度,针对大规模的平面并联机构在该系统相比下降了30%,这样的初始优化是有效的。
图-9、图-10 动态响应
结论
本文设计了一种新型三自由度机械手变量的敏感性进行了研究在adams环境中,可以得出以下结论:
1)机器人具有较大的水平刚度,最终水平位移,效应主要是由机械手垂直变形造成的,因此,更重要的是增加的幅度比刚度竖向刚度。
2)参数ixx,iyy并链接'截面刚度izz有不同的效应,iyy已经对垂直刚度的影响最大,ixx在第二位的是,ixx具有在垂直刚度的影响最小,他们都较少对水平比垂直刚度刚度。3)横截面的不同环节都有不同的影响,连线竖向刚度ab和德应该使用区扭转常数和惯性力矩大,如变形、长方形、横梁km,线 03f应该使用区段形梁等重大时刻转动惯量、横梁gk,和gm 可以使用尽可能的一小部分,从而降低了质量。4)最佳的线性驱动器的相对位置可以减少变形,最好的位置是垂直的平行结构。5)改进的机械手的动态分析表明该优化设计方法研究的基础上的效率。
参考文献
[
l
]
dasgupta b,mmthyunjayab t s。the stewart platform manipulator:a review。mechat~m and machine theory,200o。35(1):15—40
[ ] xi f,zhang d,xu z,et al。a comparative study on tripod u ts for machine lo0ls。intemational journal of machine tools
2023年二自由度工业机器人 3自由度工业机器人机构简图(5篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。