电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

2023年正比例函数的教案 正比例函数教学(8篇)

来源:互联网作者:editor2024-07-281

正比例函数的教案 正比例函数教学篇一

1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。

2、通过练习,巩固对正比例意义的认识。

3、情感、态度与价值观:初步渗透函数思想。

能根据数量关系式或图象判断两种量是否成正比例。

投影仪。

一、新课讲授

教学第46页内容。

教师出示表格(见书),依据表中的数据描点。(见书)

师:从图中你发现了什么?

生:这些点都在同一条直线上。

看图回答问题

①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4、0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?

你还能提出什么问题?有什么体会?

组织学生分小组汇报,学生汇报时可能会说出

①正比例关系的图象是一条经过原点的直线。

②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。

二、练习讲授

1、基本练习。

(1)投影出示教材第49页第1题。

教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。

教师要求学生从两个方面说明为什么成正比例。

a、电是随着用电量的增加而增加;

b、电费与用电量的比值总是相等的。

师生共同订正。

(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……

①出示下表,填表。

一列火车行驶的时间和路程

②填表并思考发现了什么?

③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)

④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。

⑤用式子表示它们的关系:路程÷时间=速度(一定)。

教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。

2、指导练习。

(1)完成教材第49页第2题。

(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。

(3)解决教材49页第4题:

①投影出示书中的表格,引导学生观察表中的数据。

②组织学生在小组中合作探究。

a、动手画一画,指名汇报图象特点。

b、组织学生说一说,相互交流。

提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。

三、课堂作业

1、根据x和y成正比例关系,填写表中的空格。

2、看图回答问题。

(1)在这一过程中,哪个量没变?

(2)路程和时间有什么关系?

(3)不计算,从图中看出4小时行驶多少千米?

(4)7小时行驶多少千米?

课堂小结:

教师:判断两个相关联的量成正比例的三个要素是什么?

通过这节课的学习,你有什么收获?

课后作业:

完成练习册中本课时的练习。

正比例图像

图像:一条过原点的直线。

正比例函数的教案 正比例函数教学篇二

1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。

2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

实物投影

一、概念复习:

1、提问:怎样的两个量成正、反比例?

根据学生回答板书字母关系式。

二、书本练习:

1、第9题。

(1)观察每个表中的数据,讨论前三个问题。

要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。

(2)组织学生讨论第四个问题。

启发学生根据条件直接写出关系式,再根据关系式直接作出判断。

2、第10题。

(1)看图填写表格。

(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。

要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。

(3)启发学生运用有关比例尺的知识进行解答。

3、第11题。

填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。

4、第12题。

引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。

5、第13题。

让学生小组进行讨论,教师指导有困难的学生。

三、补充练习

1、对比练习:判断下列说法是否正确。

(1)圆的周长和圆的半径成正比例。( )

(2)圆的面积和圆的半径成正比例。( )

(3)圆的面积和圆的半径的平方成正比例。( )

(4)圆的面积和圆的周长的平方成正比例。( )

(5)正方形的面积和边长成正比例。( )

(6)正方形的周长和边长成正比例。( )

(7)长方形的面积一定时,长和宽成反比例。( )

(8)长方形的周长一定时,长和宽成反比例。( )

(9)三角形的面积一定时,底和高成反比例。( )

(10)梯形的面积一定时,上底和下底的和与高成反比例。( )

正比例函数的教案 正比例函数教学篇三

1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

认识正比例关系的意义。

掌握成正比例量的变化规律及其特征。

1.说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一 个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

1.教学例1。

出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让学生观察表里两种量变化的数据,思考:

(1)表里有哪两种数量,这两种数量是怎样变化?

(2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?

(3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?

引导学生进行讨论,得出:

(1)表里的两种量是长方形的宽与面积(长与面积)。宽与面积(长与面积)是两种相关联的量,(板书:两种相关联的量)面积随着宽(长)的变化而变化。

(2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。

(3)可以看出它们的变化规律是:面积与宽(面积与长)比的比值总是一定的。(板书:面积和宽比的比值一定)因为面积和宽(面积与长)对应数值比的比值都是5(2)。提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长(一定)面积/长=宽(一定)想一想,这个式子表示的是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定)

2.教学例2。

出示例2。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?你是怎样发现的?你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成单价一定时,总价和数量比的比值一定)

3.概括正比例的意义。

(1)综合例1、例2的共同点。

提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里

2023年正比例函数的教案 正比例函数教学(8篇)

正比例函数的教案 正比例函数教学篇一1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。2、通过练习,巩固对正比...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?