电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

最新罗明亮小数的意义教学设计(13篇)

来源:互联网作者:editor2024-07-281

罗明亮小数的意义教学设计篇一

教材以两位小数的意义为主要研究对象,向前联系一位小数与整数,往后发展到三位小数和四位小数,逐渐形成比较完整的小数概念以及记数方法。例1从学生已有的经验切入,先教学两位小数的读法,再感受两位小数的含义,学生体会两位小数的意义不是很轻松的。而小数部分的读法与整数部分不同,又是他们初学时感到不习惯的。从有利于教学出发,例题先讲两位小数的读法,再让学生感受到两位小数的含义。例2通过数形结合,建立小数的概念。

1、通过学习使学生在分数的基础上认识小数,知道什么是小数,小数的意义,学会分数、小数的互化。

2、培养学生的理解空间想象能力。

3、训练学生思维的灵活性。

小数的意义及小数与分数的联系。

多媒体课件

用分数表示下面的数。

1角=()元,1分米=()米。

2角=()元,1厘米=()米。

1分=()元,1毫米=()米。

1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。

指名回答问题。注意学生回答问题时要完整。

橡皮的单价0.3元是3角;信封的单价0.05元是5分;练习簿的单价0.48元是4角8分或48分。

(联系学生的已有经验,既使学生消除对这三个小数的陌生感,又为下面体会小数的意义埋下伏笔。)

2、教学小数的读法:

你能读出下面的'小数吗?鼓励学生大胆尝试。

0.05读作:零点零五;0.48读作:零点四八。

引导学生总结读整数部分为0的小数的方法:

从左往右依次读出各位上的数。

3、初步感受两位小数的含义。

想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?

小组讨论交流。

汇报:0.3元是1元的十分之三。

(学生根据三年级的知识,完全可以回答出第一个问题。)

0.05元是1元的百分之五。提问:为什么:

(根据学生的回答情况,可以作如下的引导。)

思路:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.05元是5分,是5个,也就是1元的_____。

根据上面的思路,让学生说明0.48元是1元的。

学生回答:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.48元是48分,是48个,也就是1元的_____。

观察板书:

你发现了什么?

引导学生看到0.05和0.48都是两位小数,都表示百分之几。

4、“试一试”

a、理解:1厘米是米,米可以写成0.01米。

指名理解1厘米为什么是米。

(1米=100厘米,1米平均分成100分,1份就是1厘米,1厘米也就是1米的,就是米。)

b、用米为单位的分数和小数分别表示4厘米与9厘米。

学生回答并说名理由。

c、观察板书:

这三个分数都是什么样的分数?(百分之几的分数)

这三个小数呢?(两位小数)

我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)

1、出示例2:

把什么看作“1”?(正方形)

看着图形将和写成小数。学生自主填空后回答。

提问:0.1表示什么?0.01又表示什么?

罗明亮小数的意义教学设计篇二

人教版数学四年级下册p50-51

本节教学内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的,是学生系统学习小数的开始。

小数实质上是十进分数的另一种表示形式,其依据是十进制位值原则。教材着重从“小数是十进分数的另一种表示形式”来说明小数的意义,使学生明确“分母是10、100、1000……的分数可以用小数来表示。”

三年级学生已经初步认识了分数和小数,再次基础上,课前让学生进行复习。在课堂上通过练习题进行新知的教学,先由教师指导学生认识一位小数,在学习两位小数和三位小数的时候,放手让学生小组探究,体现学习的自主性。通过直观的图形帮助学生理解小数的意义,知道分母是10、100、1000……的分数可以用小数表示。通过想一想、说一说、议一议等活动使学生认识小数的计数单位和数位,掌握小数的计数单位间的进率是10。通过一系列练习巩固认识小数的意义。

1、利用米尺和面积图研究分数和小数之间的关系,感悟小数的意义:分母是10、100、1000……的分数可以用小数表示。理解小数是十进分数的另一种表示形式。

2、认识小数的数位和计数单位。

3、知道小数每相邻两个计数单位间的进率是10。

理解小数的意义

小数每相邻两个计数单位间的进率是10

课前谈话:三年级我们已经认识了小数,课前也带领大家根据学案复习了小数的知识,并要求大家把你写的小数进行了分类。

下面请同学们给同桌读一读你写的分数和小数,并互相说一说分类结果

课件出示学案内容

一.复习导入

(出示一位学生的分类结果)

师:请这位同学来回答,你把这些小数分成了几类?

生:三类

师:你是怎么想的?

生:小数点后面只有一位的是一类,小数点后面是两位的是一类,小数点后面三位的是一类

师:你们分的和他一样吗?

小数点右边的部分是小数部分(板书补充数位顺序表)

小数部分只有一位的小数叫做一位小数,那小数部分只有两位的小数呢?

生:两位小数

师:三位的呢?

生:三位小数

师:今天我们一起来探究小数的意义(板书:小数的意义)

【设计意图:三年级已经初步认识了小数,会写以米、元作单位的小数,并理解其意义。在此基础上,也能用小数表示面积图和线段图中给定部分,因此利用课前复习关于小数的知识,为本节课的学习做准备】

二、新授

(一)认识一位小数

1、出示尺子图

师:看这幅图,你是怎样填的?

生:分数:1/10米,小数:0.1米

师:你是怎么想的.?

生:把1米平均分成10份,其中的一份是1/10米,用小数表示是0.1米。

师:谁再来说一说?

2、出示面积图

师:再看这个图,你还能用分数和小数表示吗?

生:分数是1/10,小数是0.1

师:为什么它也能用0.1表示?

生:涂色部分表示把正方形平均分成10份,取其中的一份,用分数表示是1/10,用小数表示是0.1.

师:其他同学同意吗?也就是说它们都表示1/10。即1/10=0.1

(出示课件:1/10=0.1)

3、出示第二幅面积图

师:那现在涂色部分是多少?

生:分数是3/10,小数是0.3

师:0.3表示什么意思?

生:把正方形平均分成10份,取其中的3份,就是3/10,分数是0.3

师:0.3里面有几个0.1?

生:0.3里面有3个0.1

4、出示

师:你还能用分数和小数表示涂色部分吗?给同桌说一说,并且说一说每个小数表示的意义

(同桌互说)

汇报

师:第一个谁来说?

生:分数是6/10,小数是0.6

师:0.6里面有几个0.1?

生:0.6里面有6个0.1

师:第二个是多少?

生:分数是9/10,小数是0.9

师:0.9表示什么?

生:把正方形平均分成10份,取其中的9份,就是9/10,小数是0.9

师:0.9里面有几个0.1?

生:0.9里面有9个0.1

5、课件出示

师:这是我们刚才得到的几组小数和分数,观察这些分数,有什么特点?

生:分母都是10,都是平均分成了10份得到的

师:也就是十分之几的数,十分之几的数我们可以用几位小数表示?

生:一位小数

师:十分之几的数用一位小数表示(课件出示)

给同桌读一读这句话

6、课件出示

师:我们再回到这个图,现在涂色部分是0.9,也就是9个0.1,如果再添一份是多少?

出示

生:10/10、1

师:十分之十就是1

1里面有几个0.1?

生:1里面有10个0.1(课件出示)

7、出示

师:这个图怎么表示?

生:1.2

师:1.2里面有几个0.1?

生:1.2里面有12个0.1(课件出示)

8、出示

师:同学们仔细看,你发现了吗?一位小数都可以看做几个0.1(引导学生说)

0.1就是一位小数的计数单位,读作十分之一(补充数位顺序表)

十分之一所占的数位就是十分位(补充数位顺序表)

师问:十分位的计数单位是什么?

生:十分之一

师:十分位所占的数位是?

生:十分位

师:老师在说一个小数:0.8

8在哪一位?(生:十分位)

它的计数单位是什么?(生:十分之一)

有几个这样的计数单位?(生:8个)

【从直观的尺子图入手到较抽象的面积图,在对比中理解0.1的意义,逐渐递进,在不断理解几个0.1的基础上,认识一位小数的计数单位和数位。在老师的引导下,问题的深入中帮助学生理解】

(二)认识两位小数、三位小数

1、自主探究

师:刚刚我们认识了一位小数的意义、数位和计数单位。那两位小数、三位小数呢?

接下来请同学们根据学案内容,结合老师给你的问题进行自主探究。

先请一位同学读一读

学生活动

2、练习反馈

师:同学刚才讨论的很积极,这几个问题都解决了吗?

那老师出几个问题考考大家

3、出示

师:涂色部分是多少?

生:分数是1/100,小数是0.01

师:你怎么想的?

生:把正方形平均分成100份,其中的一份是1/100,小数是0.01

师:谁再来说一说?

出示

师:这一个呢?

生:分数是4/100,小数是0.04

师:0.04里面有几个0.01?

生:有4个0.01

出示

师:这是多少?

生:分数是21/100,小数是0.21

师:0.21里面有几个0.01?

生:有21个0.01

4、认识两位小数的计数单位和数位

师:两位小数的计数单位是什么?(生:0.01)

也可以说是百分之一(补充数位顺序表)

百分之一所占的数位是?(生?百分位)(补充顺序表)

两位小数表示的是?(生:百分之几的数)

5、三位小数的意义

出示

师:再看这个图,涂色部分是多少?

生:分数是1/1000,小数是0.001

师:0.001表示什么?

生:把一个物体平均分成1000分,取其中的一份,就是1/1000,也就是0.001

师:谁再来说?

出示:0.125

师:再看这个数,是多少?(生:零点一二五)

没有图了,你还能说出他的意义吗?

生:把一个物体平均分成1000份,取其中的125份就是125/1000,用小数表示是0.125

师:0.125里面有几个0.001?

生:有125个

6、三位小数的计数单位和数位

师:三位小数的计数单位是什么?(生:0.001)

也可以读作千分之一

千分之一所占的数位是?(生:千分位)

(补充数位顺序表)

三位小数表示的是什么数?(生:千分之几的数)

【设计意图:在认识一位小数时,由教师带领学习,而在认识两位小数和三位小数时,则放手让学生自主探究,利用认识一位小数时的学习经验进行学习】

7、延伸

师:那四位小数呢?(生:万分之几)

计数单位是?(生:万分之一)

往下说的完吗?(生:说不完)

我们可以用省略号表示(补充数位顺序表)

8、拓展

师:小数部分有没有最小的计数单位?

生:有

师:有不同意见吗?

生:没有最小的计数单位,因为我们把物体平均分成10份,又平均分成100份,1000份,越分越小

师:你们听懂了吗?

想一想,0.1是怎么得到的?

生:平均分成10份,1份是0.1

师:那0.01就是平均分成100份,取其中的一份。0.001就是平均分成1000份,取其中的一份,随着分的分数越来越多,一份就越来越小,如果我继续分下去能分完吗?越往下分越小,那有没有最小的计数单位?

生:没有最小的计数单位。

师:小数部分有没有最大的计数单位?

生:十分之一

9、修改数位顺序表

师:拿出你刚才写的数位顺序表,看一看你写的对吗?

有问题的修改一下

(三)计数单位间的进率

1、出示:

师:第一个图的涂色部分用小数表示是?(生:0.1)

第二个图的涂色部分用小数表示是?(生:0.10)

你发现了什么?

生:两个图的涂色部分一样大

师:也就是他们大小相同。(出示:0.1=0.10)

有什么不同吗?

生:平均分的份数不同,一个平均分成了10分,一个平均分成了100份

师:对不对?第一个平均分成了10份,取其中的一份,第二个平均分成100份,取其中的10份

第一个表示1个0.1,第二个表示10个0.01

你还有什么发现?

生:10个0.01是0.1(板书)

师:一起读一遍

2、出示(由1个0.1增加到10个0.1)

生一起数到1

师:你发现了什么?

生:10个0.1是1

师:(板书)再读一读

3、小结

师(指数位顺序表):你有什么发现?

生:进率是10

师:对,小数和整数一样,相邻两个计数单位间的进率是10

罗明亮小数的意义教学设计篇三

苏教版五年级上册第28-29页。

在一至四年级,“数与代数”领域主要教学整数的知识,学生已经初步掌握了十进制计数法。三年级(下册)曾经教学了一位小数,初步体会了一位小数与十分之几的分数间的联系,这些都是本课基础。本课教材中例1、例2借助常用的元、角、分和米、厘米、毫米单位之间的换算,通过这样的感性认识,初步抽象出小数的意义。本课又是进一步教学小数性质、比较小数大小、改写大数目的基础,因此小数的意义是本单元教学的重点。

这一部分内容学生在三年级初步认识小数时其实已经有了学习的基础。学生有以元为单位的小数表示金额,以米为单位的小数表示长度的经验。如果本节课再把大量的时间放在这一方面,无异于原地转圈。对于五年的学生来讲,有了一定的学习能力,对数字语言、文字语言以及图形符号语言有了一定程度的认识和理解。所以,课前的预习,五年级孩子是可以胜任的。所以教师要充分发挥学生自主探索的能力,让学生自主运用已有的经验理解小数的意义,从而实现感性认识到理性认识的飞跃。

本节课是一次校级教研课,在第一次试教时按照例题教学,逐步去理解小数的意义。实施下来发现,学生思维就局限在这些单位换算中,而对小数意义的理解并不到位。于是备课组老师就讨论对于这样的概念课怎样才能达到高效呢?最后商量一致同意尝试学生先学后教,由学定教的教学方式,将本节课的设计分成三大板块。

(1)前置学习,初步感悟。课前通过引导题,让学生自学例1、例2,在常用的价钱和长度单位换算之间,初步感悟分数与小数的联系。同时通过检测题了解学生是否真正理解它们之间的换算,理解分母是10、100、1000……的分数可以用一位小数、两位小数、三位小数……表示。

(2)课中操作,沟通联系。小数的意义是在分数意义的基础上建立起来的。这符合认知建构的理论观点:学习者对新知识的理解程度与他们内在的认知结构息息相关。布鲁纳说得更清楚:“获得的知识如果没有完整的结构把它们连在一起,那是一种多半会遗忘的知识。”学习一个概念,需要在心理上组织起适当的认知结构,并使之成为个人内部知识网络的一部分。沟通小数与十进分数的内在联系,是引导学生理解小数意义的关键。怎样让学生主动建构小数与十进分数之间的联系?我们借鉴了特级教师朱国荣老师的设计。用一张正方形纸表示整数“1”,让学生根据自己的理解,表示0.1的大小,在此基础上认识0.9、0.2、0.8……从而理解1里面有10个0.1.继续拓展,认识两位小数、三位小数……

(3)分层练习,实质理解。第一,基本练习,对口令;第二,看图写小数;第三,结合数轴找小数。这三组练习题,层层递进,检测学生能否从本质上真正理解小数的意义。

一、前置学习,初步感悟。

1.揭题:今天这节课,我们学习新的一单元,一起读一读。在三年级我们已经初步认识了小数。今天我们重点来研究小数的意义。

2.课前大家对今天学习的内容已经进行了预习,小组交流,把你的错误向小组里的同学请教一下。(自学学习材料附后)

3.全班汇报

第一层次:角改写成元作单位可以用一位小数表示,分改写成元作单位可以用两位小数表示。

第二层次:分米改写成米作单位就是十分之几米,也可以写成一位小数,厘米改写成米作单位就是百分之几米,也可以写成两位小数,毫米写成米作单位就是千分之几米,也可以写成三位小数。

二、课中操作,沟通联系。

1.理解一位小数的意义

(1).刚才我们通过课前研究,初步感知了小数和分数的联系,那你能根据自己的理解说一说0.1的意义是什么吗?

(2).那么老师这里有一张正方形纸,如果把这张正方形的纸看作1,怎么在这张纸上表示0.1的大小。

拿出正方形纸,分一分,涂一涂表示0.1的大小。

展示交流,看看这些同学的作品,发表你的意见。

那谁能很自信地确定你表示的`是正确的?介绍你的想法。还有不一样的吗?

虽然形状不一样,但所表示的都是把一个正方形平均分成10份,涂了其中的一份。

(3).课件演示,这样表示0.1吗?要表示0.1还需要涂出一份。再说一说0.1表示什么意义。

(4).仔细看,你除了看到0.1还看到那个小数?你是怎么看到0.9的?写成分数是什么?0.9和0.1合起来是多少?1里面有几个0.1。

(5).这里你能看到哪2个小数,写成分数是多少。合在一起是几?

(6).把1平均分成十份,我们认识了0.1、0.9、0.2、0.8外还可以表示那些小数。

这些小数都是一位小数,一位小数表示什么意义呢?

把1平均分成10份,表示其中的几份,也就是表示十分之几。

2.理解两位小数的意义

(1).那0.01的意义是什么呢?

(2).如果还是把这张正方形纸看成1,要在这张正方形纸上表示0.01,你准备怎么表示。

把这张正方形纸平均分成100份,涂其中的1份表示0.01。

(3).课件演示,0.01可以表示哪个分数。仔细观察你除了看到0.01,你还能看到那个小数。

0.99写成分数是多少?0.99里有几个0.01。0.01和0.99合在一起是多少。1里有多少个0.01

(4).课件出示,你看到哪2个小数,分数是什么?

0.28和0.72合在一起是多少。

这些小数都是两位小数,两位小数表示什么意义。

把1平均分成100份,取其中的几份,也就是表示百分之几。

3.理解三位小数的意义

(1).照这样看三位小数表示?千分之几。

(2).三位小数最小的是谁?0.001表示什么意义。写成分数是什么?你能写一个最大的三位小数吗?0.999表示什么意义。0.001和0.999合在一起是多少。1里面有多少个0.001。

0.012写成分数是多少?写成小数是多少?

4.拓展四位小数、五位小数

(1).那四位小数表示什么呢?0.0123表示哪个分数。

(2).五位小数表示什么意义?写成小数是什么?

5.概括小数的意义

那什么是小数的意义呢?

引导学生归纳:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

三、分层练习,实质理解。

1.对口令

看来大家对小数的意义都已经基本掌握了,那我们一起来玩一个游戏,看谁学得扎实。

规则:老师出示小数,请你快速说出分数,老师出示分数,请你快速说出小数。

结合有单位的题目,0.80元、厘米、0.006米说一说表示的意义。

2.写小数

刚才我们在一张平面的正方形中找到了小数,看,在这个正方体中,涂色的部分能用哪个小数表示呢?

这个图形又可以用哪个小数表示?如果要表示2.43怎么办?

3.数轴上得小数

看、这是一条数轴,这两个点可以用哪个小数表示。

把数轴延伸,这两个点可以用哪个小数表示。2.35在哪里?从0向左看你还能找到哪些数。

4.通过本节课的学习你有什么收获?

虽然我们感觉掌握的还不错,但是伟大的数学家高斯曾说过“给我最大快乐的,不是已懂得的知识,而是不断的学习。”希

最新罗明亮小数的意义教学设计(13篇)

罗明亮小数的意义教学设计篇一教材以两位小数的意义为主要研究对象,向前联系一位小数与整数,往后发展到三位小数和四位小数,逐渐形成比较...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?