2023年八年级数学说课稿10分钟(十五篇)
八年级数学说课稿10分钟篇一
大家好!
今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。我将从如下步骤进行。
1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。
2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。
根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:
1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。
我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。
(一)创设情境,发现新知
首先提出问题
问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么?
【设计意图及教法说明】
在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。
问题2:我们知道,电流i、电阻r、电压u之间满足关系式u=ir,当u=220v,
(1)你能用含有r的代数式表示i吗?
(2)利用写出的关系式完成下表。
r/ω 20 40 60 80 100
i/a
当r越来越大时,i怎样变化?当r越来越小呢?
(3)变量i是r的函数吗?为什么?
【设计意图及教法说明】
因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简单,学生可以独立完成,但对于问题(3),老师要给适当的指导。
问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的?
【设计意图及教法说明】
学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。
问题3:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?
【设计意图及教法说明】
问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。
(二)合作探究,获得新知
1.出示问题
想一想,你还能举出类似的例子吗?
【设计意图及教法说明】
这个环节目的在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。
2.启发学生建构新知
反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。
反比例函数自变量不能为0!
反比例函数的一般形式:y= k/x(k为常数,k≠0)
反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0)
【设计意图及教法说明】
这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。
(三)反馈练习,应用新知
根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。
1.基础过关
(1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少?
①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2
【设计意图及教法说明】
此题较简单,以口答的形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习1。
(2)做一做
①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?
②某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?
③y是x的反比例函数,下表给出了x和y的一些值:
a.写出这个反比例函数的表达式;
b.根据函数表达式完成下表。
表略。
【设计意图及教法说明】
通过三个实际问题的解决,培养了学生“发现问题”、“解决问题”的能力,也达到了学以致用的目的。
2.能力拓展
(1)你能举个反比例函数的实例吗?与同学进行交流。
(2)y=5xm是反比例函数,求m的值。
【设计意图及教法说明】
问题(1)是一个开放性的题,既解决了随堂练习2,也培养了学生的发散性思维。问题(2)能助于学生抓住关键点,澄清易错点(反比例函数中k≠0),并且加强了新旧知识的联系。
(四)归纳总结,反思提高
通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。
(如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?)
【设计意图及教法说明】通过问题式的小结,让学生再次归纳、总结本节课的重点,弥补教学中的不足。
(五)推荐作业,分层落实
必做题:课本第134页习题1、2题。
选做题:已知y与2x成反比例,且当x=2时,y=-1,求:
(1)y与x的函数关系式。
(2)当x=4时,y的值。
(3)当y=4时,x的值。
【设计意图及教法说明】作业以推荐的形式进行,必做题体现了对新课标下“学有价值的数学”、“人人能获得必要的数学”的落实,选做题体现了让“不同的人在数学上得到不同的发展”。
八年级数学说课稿10分钟篇二
说课内容:
《整式的乘除与因式分解》的《完全平方公式》。
教材的地位和作用:
完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用,重要的数学方法“配方法”的基础也是依据完全平方公式的。而且它在整式乘法,因式分解,分式运算及其它代数式的变形中起作十分重要的作用。
本节内容共安排两个课时,这次说课是其中第一个课时。完全平方公式这一教学内容是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,教材从具体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,逐步培养学生的逻辑推理能力和建模思想。
教学目标和要求:
由课标要求以及学生的情况我将三维目标定义为以下三点:
知识与技能目标:了解公式的几何背景,理解并掌握公式的结构特征,能利用公式进行计算。
过程与方法目标:在学习的过程中使学生体会数、形结合的优势,进一步发展符号感和推理能力,培养学生数学建模的思想。
情感与态度目标:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立自信心。
教学的重点与难点:
根据对学生学习过程分析及课标要求我把重点定为:完全平方公式的结构特点及公式的直接运用。而难点应为完全平方公式的应用以及对公式中字母a、b的广泛含义的理解与正确应用。在教学过程中多处留有空白点以供学生独立研究思考。
(1)多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。
(2)教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。
(3)由易到难安排例题、练习,符合八年级学生的认知结构特点。
(4)课堂中,对学生激励为主,表扬为辅,树立其学习的自信心。
教师活动学生活动设计意图
一、创设情景,推导公式
计算
1、想一想(电脑演示)
一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种,(如图所示)
⑴、分别写出每块实验田的面积;
⑵、用不同的形式表示实验田的总面积,并进行比较,你发现了什么?
2、算一算
①、=?你能用多项式乘法法则说明理由吗?(引导学生说理)
3、做一做
你能利用面积知识,仿照课本以及演示的动画,自己给出的示意图吗?
二、自主探究,合作交流
板书公式:
①②1、问题:
①这两个公式有何相同点与不同点?
②你能用自己的语言叙述这两个公式吗
八年级数学说课稿10分钟篇三
1、教材的地位和作用
《等腰三角形的性质》是“华东师大版八年级数学(上)”第十三章第三节第一课时的内容。本节先课利用轴对称的知识来探索发现等腰三角形的有关性质,然后利用全等三角形的知识证明这些性质。学习过程中运用的“操作——观察——发现——猜想——论证——应用”的方法是探究数学知识的常用方法。同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形知识以及等腰三角形的判定的基础知识,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。起着承前启后的作用。
2、教材的教学目标:
①知识与技能目标:
掌握等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。
②过程与方法目标:
通过实践、观察、同组间学生以及小组与小组间的合作与交流,培养学生多角度思考问题和分析问题、解决问题的能力。
③情感与态度目标:
通过合作交流培养学生团结协作、乐于助人的品质。
3、教学重点与难点:
重点:等腰三角形“等边对等角”和“三线合一”性质的探究和应用。难点:等腰三角形性质的推理证明。
八年级上期学生学习几何知识有了初步的抽象思维感知,有一定的形象直观思维能力,能进行简单的推理论证。但其运用数学思维的广阔性、紧密性、灵活性比较欠缺,在学习过程中要加强引导和培养。
根据本课内容特点和初二学生思维活动的特点,在教学中我将采用“操作——观察——发现——猜想——论证——应用”的教学法,利用分组活动,组间合作与交流从而达到对“等边对等角”和“三线合一”的性质的探究的层层深入。另外,我还将采用多媒体辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。
《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。结合这一理念在探究等腰三角形的性质时我将采用学生实验操作、小组合作、观察发现、师生互动、学生互动的学习方式。
(一)创设情景、导入新课
①复习提问:向同学们出示几张精美的建筑物图片,引入等腰三角形。
(设计意图:感知数学知识和实际生活联系紧密,培养观察力,感受身边处处有数学。)
②等腰三角形的相关概念:
1.定义:两条边相等的三角形叫做等腰三角形。
边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边。
角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
③设问:等腰三角形具有哪些特殊的性质呢?(引入新课)
(二)实验探索、得出猜想:
①动动手:让同学们用剪刀在长方形纸片上剪下等腰三角形,每个人的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?“比一比”看谁思考的结论最多。
(设计意图:以六人小组为单位学生亲自操作实验,填写导学案。通过组内合作与交流,集思广益让学生用自己的语言在小组内表达自己的发现。)
②得出猜想:可让学生有充分的时间观察、思考、交流、可能得到的结论:
(1)等腰三角形是轴对称图形
(2)∠b=∠c
(3)bd=cd,ad为底边上的中线
(4)∠adb=∠adc=90°,ad为底边上的高线(5)∠bad=∠cad,ad为顶角平分线
(设计意图:以小组为单位派代表发言即组间交流补充,引导归纳提炼,使不同层次的学生都能感受新知,建立新的知识体系,为进一步探索做准备。)
(三)证明猜想、形成定理:
1、结论(2)∠b=∠c你能用一个命题表达这一结论并论证它的正确性吗?
(1)语言总结:等腰三角形的两底角相等。(简写成“等边对等角”)
(2)怎样论证这个一命题的正确性呢?
①为证∠b=∠c,需要添加辅助线构造以∠b、∠c为元素的两个全等三角形。
②探讨添加辅助线的方法,让学生选择一种辅助线并完成证明过程。
设计说明:以上过程分小组讨论,在探索过程中鼓励学生寻求不同(作高、中线、角平分线)的方法来解决问题。
利用展台展示各小组不同的证明方法,让学生的个性得到充分的展示。
(3)得出等腰三角形的性质1:等腰三角形的两底角相等。(简写成“等边对等角”)
2、结论(3)(4)(5)你也能用一个命题表达这一结论并论证它的正确性吗?
(1)结合性质一的证明鼓励学生证明总结的命题
(2)得出等腰三角形的性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。
(3)“三线合一”的几何表达:
如图,在△abc中,ab=ac,点d在bc上
①(1)如果∠bad=∠cad,那么ad⊥bc,bd=cd
②(2)如果bd=cd,那么∠bad=∠cad,ad⊥bc(为了方便记忆可以说成“知一求二!”)
③(3)如果ad⊥bc,那么∠bad=∠cad,bd=cd
2.设计意图:充分调动各组学生的积极性、主动性,采用各小组竞争的方式,参照性质1的探索完成本性质的探索与证明。通过本性质的探索让不同的学生有不同的收获,让每个学生的能力都得到提升。
(四)实例剖析、巩固新知:
1、例1:已知:在△abc中,ab=ac,∠b=80°,求∠c和∠a的度数
2、例2:在△abc中,ab=ac,点d是bc的中点,∠b=30
(1)求∠adc的度数
(2)求∠bad的度数
此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。
解:(1)∵ab=ac,d是bc边上的中点(已知)
∴ad⊥bc,∠bad=∠cad(等腰三角形的“三线合一”)
∴∠adc=∠adb=90°(垂直的定义)
(2)∵∠bad ∠b ∠adb=180°(三角形内角和等于180°)
∴∠bad=180°-∠b-∠adb
=180°-30°-90°=60°
(设计意图:设计例题1巩固等腰三角形“等边对等角的性质”的理解,让学生学以致用,获得成就感,增强学习数学的自信心。而例题2主要是体会等腰三角形“三线合一”性质的运用。这两个例题作为课本上的例题是基础新知的巩固,要求能正确的写出解题过程。)
(五)课堂练习、总结所得:
1、先完成课后81页练习1、2、3、4题
(设计意图:作为课本上的练习题的完成达到检测学生对本节课知识的掌握情况,从而帮助学生查漏补缺,巩固基础知识。)
2、学以致用:
(设计意图:让书生体会数学知识和实际生活的紧密联系)
如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边ab和ac是相等的建筑工人师傅对这个建筑物做出了两个判断:
①工人师傅在测量了∠b为37°以后,并没有测量∠c,就说∠c的度数也是37°。
②工人师傅要加固屋顶,他们通过测量找到了横梁bc的中点d,然后在ad两点之间钉上一根木桩,他们认为木桩是垂直横梁的。
请同学们想想,工人师傅的说法对吗?请说明理由。
设计意图:运用所学知识解决实际问题,引导学生将实际问题转化为数学问题,进一步加深学生对等腰三角形性质的理解和运用;从数学回到实际生活,自然地渗透数学作用于实际问题的思想。
3、课堂小结
今天我们学习了什么?你觉得在等腰三角形的学习中要注意哪些问题?设计意图:帮助学生回顾,归纳,巩固所学知识。
(六)作业布置、深化提高:
1、课本p84:习题13.31、2、3;(必做题)
2、(思维发散)选做题
已知:如图△abc中,ab=ac,ce⊥aee1于e,ce=bcb2
求证:∠ace=∠bc
八年级数学说课稿10分钟篇四
1、在教材中的作用与地位
《菱形》紧接《矩形》一节之后。纵观整个初中平面几何教材,它是在学生掌握了平行四边形的性质与判定,又学习了特殊的平行四边形——矩形,具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习正方形等知识的基础,起着承前启后的作用。
2、从教材编写角度看
教材从学生年龄特征、文化知识的实际水平出发,先让学生动手做,动脑思考,然后与同伴交流、探索、总结归纳,升华得出菱形的性质及判定,这样的安排使抽象的定理让学生更易于接受,并能在整个的教学过程中真正享受到探索的乐趣。
我选择的是初二(1)班,该班级是年段的普通班,学生的情况是中等学生较多,尖子生只有个别,还有8至10名的学习上落后的学生。因此长期以来我都坚持做好培养学生良好的学习习惯和自主学习的能力的工作。
3、基于对教材和班级学情的分析,我认为本节课的教学有几个方面需要把握好的:
⑴本节课的课题是:探索菱形的重要性质;
⑵目标是:让学生能在动手实践过程中发现并理解菱形的性质;
⑶重点是:菱形的定义与性质;
⑷教学难点是:菱形性质的灵活运用。
4、根据新课程标准的要求及学生的实际情况,本节课我制定了如下教学目标:
(一)知识与技能
(1)知道菱形在现实生活中有广泛的应用。
(2)熟记菱形的有关性质和识别条件,并能灵活运用。
(二)过程与方法
经历探索菱形的性质和识别条件的过程,在观察、操作和分析的过程中,进一步增进主动探究的意识,体会说理的基本方法。
(三)情感态度价值观
体验数学活动来源于生活又服务于生活,体会菱形的图形美,提高学生的学习兴趣。
1、教学设计思想
菱形是特殊的平行四边形,后继课要学的正方形具有菱形的一切性质。这节课教学时注重学生的探索过程,让观察、猜测、验证,获得知识,培养主动探究的能力。首先由生活中的图片引入,引起学生学习兴趣,发现菱形在生活中的广泛应用,然后设计几个探究性问题,让学生小组讨论,相互交流,形成共识。讲解例题时根据学生特点帮助他们分析题意,灵活运用菱形的性质与识别条件解题。
2、教学方法
针对本节课的特点,我准备采用“创设情境→观察探索→总结归纳→知识运用”为主线的教学模式,观察分析讨论相结合的方法。在教学过程中引导学生经过观察、思考、探索、交流获得知识,形成能力。在教学过程中注意创设思维情境,坚持学生主体,教师主导,在合作、交流的气氛下进行师生互动,培养学生的自学能力和创新意识,让学生在老师的指导下自始至终处于一种积极思维、主动探究的学习状态。同时借助多媒体进行演示,以增加课堂容量和教学的直观性,更好的理解菱形的性质,解决教学难点。
在本节课的教学中,要帮助学生学会运用观察、分析、比较、归纳、概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的甘苦,领会到成功的喜悦。
(一)引入新课
在复习了平行四边形与矩形的性质后创设教学情景。如:出示我国古代文物越王勾践剑的图片,指出菱形花纹,再展示生活中的菱形图案的应用图片。由此引出课题,可以吸引同学的注意,使其产
2023年八年级数学说课稿10分钟(十五篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。