最新双曲线教学设计评析 双曲线教学目标三篇(通用)
双曲线教学设计评析 双曲线教学目标篇一
(一)知识教学点
使学生理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征。
(二)能力训练点
在与椭圆的性质的类比中获得双曲线的性质,从而培养学生分析、归纳、推理等能力。
(三)学科渗透点
使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决双曲线中的弦、最值等问题。
1、重点:双曲线的几何性质及初步运用。
(解决办法:引导学生类比椭圆的几何性质得出,至于渐近线引导学生证明。)
2、难点:双曲线的渐近线方程的导出和论证。
(解决办法:先引导学生观察以原点为中心,2a、2b长为邻边的.矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线。)
3、疑点:双曲线的渐近线的证明。
(解决办法:通过详细讲解。)
提问、类比、重点讲解、演板、讲解并归纳、小结。
(一)复习提问引入新课
1、椭圆有哪些几何性质,是如何探讨的?
请一同学回答。应为:范围、对称性、顶点、离心率,是从标准方程探讨的。
2、双曲线的两种标准方程是什么?
再请一同学回答。应为:中心在原点、焦点在x轴上的双曲线的标
下面我们类比椭圆的几何性质来研究它的几何性质。
(二)类比联想得出性质(性质1~3)
引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发、订正并板书)。
(三)问题之中导出渐近线(性质4)
在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2—26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想。
接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么?
下面,我们来证明它:
双曲线在第一象限的部分可写成:
当x逐渐增大时,|mn|逐渐减小,x无限增大,|mn|接近于零,|mq|也接近于零,就是说,双曲线在第一象限的部分从射线on的下方逐渐接近于射线on。
在其他象限内也可以证明类似的情况。
现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字。
这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精,再描几个点,就可以随后画出比较精确的双曲线。
(四)顺其自然介绍离心率(性质5)
由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:
变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔。
这时,教师指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变。
(五)练习与例题
1、求双曲线9y2—16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。
请一学生演板,其他同学练习,教师巡视,练习毕予以订正。
由此可知,实半轴长a=4,虚半轴长b=3。
焦点坐标是(0,—5),(0,5)。
本题实质上是双曲线的第二定义,要重点讲解并加以归纳小结。
解:设d是点m到直线l的距离,根据题意,所求轨迹就是集合:
化简得:(c2—a2)x2—a2y2=a2(c2—a2)。
这就是双曲线的标准方程。
由此例不难归纳出双曲线的第二定义。
(六)双曲线的第二定义
1、定义(由学生归纳给出)
平面内点m与一定点的距离和它到一条直线的距离的比是常数e=叫做双曲线的准线,常数e是双曲线的离心率。
2、说明
(七)小结(由学生课后完成)
将双曲线的几何性质按两种标准方程形式列表小结。
1、已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。
(1)16x2—9y2=144;
(2)16x2—9y2=—144。
2、求双曲线的标准方程:
(1)实轴的长是10,虚轴长是8,焦点在x轴上;
(2)焦距是10,虚轴长是8,焦点在y轴上;
曲线的方程。
点到两准线及右焦点的距离。
作业答案:
距离为7
双曲线教学设计评析 双曲线教学目标篇二
双曲线及其标准方程
【知识与技能】:
1、通过教学,使学生熟记双曲线的定义及其标准方程,并理解这一定义及其标准方程的探索推导过程.
2、理解并熟记双曲线的焦点位置与两类标准方程之间的对应关系.
【过程与方法】:
通过“实验观察”、“思考探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观.【情感、态度与价值观】:通过实例的引入和剖析,让学生再一次感受到数学来源于实践又反作用于实践;生活中处处有数学.
1、在学生已学习椭圆的定义及其标准方程和掌握“曲线的方程”与“方程的曲线”的概念之后,学习双曲线定义及其标准方程,符合学生的认知规律,学生有能力学好本节内容;
2、由于学生数学运算能力不强,分析问题、解决问题的能力,逻辑推理能力,思维能力都比较弱,所以在设计的时候往往要多作铺垫,扫清他们学习上的障碍,保护他们学习的积极性,增强学习的主动性.
教学重点:双曲线的定义、标准方程
教学难点:双曲线定义中关于绝对值,2a
【导入】
1、以平面截圆锥为模型,让学生认识双曲线,认识圆锥曲线;
2、观察生活中的双曲线;
【设计意图:让学生对圆锥曲线整体有所把握,体会数学来源于生活.】探究一
活动1:类比椭圆的学习,思考:
研究双曲线,应该研究什么?怎么研究?
从而掌握本节课的主线:实验、双曲线的定义、建系、求双曲线的标准方程;活动二:数学实验:
(1)取一条拉链,拉开它的一部分,
(2)在拉链拉开的两边上各取一点,分别固定在点f1,f2上,
(3)把笔尖放在拉头点m处,随着拉链逐渐拉开或者闭拢,笔尖所经过的点就画出一条曲线。
(4)若拉链上被固定的两点互换,则出现什么情况?
学生活动:六人一组,进行实验,展示实验成果:
【设计意图:学生亲手操作,加深对双曲线的了解,培养小组合作精神.】
学生实验可能出现的情况:画出双曲线的居多,但还是有画出中垂线,或者两条射线的可能,学生展示,小组同学解释,为什么会出现这种情况?
【设计意图:让学生在“实验”、“思考”等活动中,自己发现问题、提出问题】活动三:几何画板演示,得到双曲线的定义:老师演示,学生思考:
引导学生结合实验分析,得出双曲线上的点满足的条件,给出双曲线的定义
双曲线:
平面内到两定点的距离的距离的差的绝对值等于定长2a(小于两定点f1f2的距离)的点的轨迹叫做双曲线。
两定点f1f2叫做双曲线的焦点
两点间f1f2的距离叫做焦距
在双曲线定义中,请同学们思考下面问题: 1:联想到椭圆的定义,你是否感到双曲线中的常数2a也需要某种限制?为什么? 2:若2a=2c,则m点的轨迹又会是什么呢?又2a
最新双曲线教学设计评析 双曲线教学目标三篇(通用)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。