大数据转正心得体会简短 转正工作心得 简短(五篇)
从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。我们想要好好写一篇心得体会,可是却无从下手吗?下面小编给大家带来关于学习心得体会范文,希望会对大家的工作与学习有所帮助。
推荐大数据转正心得体会简短一
1.参与公司数据平台系统规划和架构工作,主导系统的架构设计和项目实施,确保项目质量和关键性能指标达成;
2.统筹和推进制造工厂内部数据系统的构建,搭建不同来源数据之间的逻辑关系,能够为公司运营诊断、运营效率提升提供数据支持;
3.负责数据系统需求对接、各信息化系统数据对接、软件供应商管理工作
5.根据现状制定总体的数据治理方案及数据体系建立,包括数据采集、接入、分类、开发标准和规范,制定全链路数据治理方案;深入挖掘公司数据业务,超强的数据业务感知力,挖掘数据价值,推动数据变现场景的落地,为决策及业务赋能;
6.定义不同的数据应用场景,推动公司的数据可视化工作,提升公司数据分析效率和数据价值转化。
任职要求:
1.本科以上学历,8年以上软件行业从业经验,5年以上大数据架构设计经验,熟悉bi平台、大数据系统相关技术架构及技术标准;
2.熟悉数据仓库、熟悉数据集市,了解数据挖掘、数据抽取、数据清洗、数据建模相关技术;
3.熟悉大数据相关技术:hadoop、hive、hbase、storm、flink、spark、kafka、rabbitmq;
4.熟悉制造企业信息化系统及相关数据库技术;
5.具备大数据平台、计算存储平台、可视化开发平台经验,具有制造企业大数据系统项目开发或实施经验优先;
6.对数据敏感,具备优秀的业务需求分析和报告展示能力,具备制造企业数据分析和数据洞察、大数据系统的架构设计能力,了解主流的报表工具或新兴的前端报表工具;
7.有较强的沟通和组织协调能力,具备结果导向思维,有相关项目管理经验优先。
推荐大数据转正心得体会简短二
职责:
1、研究大数据新技术分析发展方向;
2、负责数据仓库逻辑模型、物理模型的分析、设计和建立,开发报表,进行数据分析;
3、负责数据仓库的业务探索(business discovery)以及信息探索(information discovery)的工作;
4、负责对原始数据进行加工清洗;
5、参与数据平台的设计、开发、维护与优化,满足上层数据运营体系各项需求;
6、参与应用分析平台的系统分析、设计以及实现工作;
任职要求:
1、对数据敏感,熟悉数学建模整个过程,拥有国家/国际数学建模获奖经历优先考虑;
2、熟悉常用的数据分析算法及数据挖掘算法,熟悉机器学习算法的原理及应用,熟悉r、python等至少一种挖掘工具;
3、3年以上软件类ai/bi项目开发经验,1年以上架构设计经验,具有大型门户/ai/bi等大型项目架构设计经验优先;
4、熟悉数据仓库实施方法论,熟悉数据建模,了解数据仓库体系架构,了解数据集市;
5、熟悉主数据、元数据、数据质量等企业数据管理相关的体系和方法;
6、熟悉与架构设计相关的数据存储/性能调优等相关领域知识;能够解决项目过程中的技术难题;
7、熟悉逻辑模型和物理模型建模、中间层模型理论以及多维模型的设计;
8、理解bi系统建设各层面,对bi建设思路和建设方向有清晰的认识,至少熟悉一种设计工具进行etl,如tableau/qlikview/cognos/bo/datastage/sas/spss等;
9、能够熟练的使用kettle等开源etl工具进行开发者优先;
10、熟悉linux,使用shell, python脚本经验优先;
12、熟悉hadoop/spark生态系统,例如hive、hbase等,有实际的集群搭建和使用经验者优先;
13、有大数据平台建设经验者优先。
推荐大数据转正心得体会简短三
大数据转正心得体会简短 转正工作心得 简短(五篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。