电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

数学广角推理听课心得体会及感悟 数学广角优化听课心得(九篇)

来源:互联网作者:editor2024-02-011

心得体会是指一种读书、实践后所写的感受性文字。那么心得体会怎么写才恰当呢?下面是小编帮大家整理的心得体会范文大全,供大家参考借鉴,希望可以帮助到有需要的朋友。

主题数学广角推理听课心得体会及感悟一

根据本学期工作计划结合班级学生及数学学习的具体情景,以素质教育为核心,以提高学生实际数学本事为重点,力求挖掘学生的进取性和学习潜在本事,切实培养学生发现问题、提出问题、探究问题解决问题的本事,同时培养学生的合作意识和与同伴的交流本事,全面提高学生的数学成绩。

学生对于小数乘除运算及解决问题等方面容易出错,可能由于粗心或计算本事比较差,经常出错。另外多边形的面积计算也不是很熟练,再者有一部分学生浮躁、懒散、不完成作业、学习态度不够端正,这都是复习过程中值得引起注意的地方。

第7周~第12周

基础复习、分类复习、综合复习

本册教材7个单元:

1、小数乘法

2、对称、平移与旋转

3、小数除法

4、简易方程

5、多边形的面积

6、因数与倍数

7、统计复习时按照整册教材的知识体系分——数与代数、空间与图形、统计图表、实践与综合运用这四大块来进行知识的梳理。

1.经过整理和复习,使学生会掌握小数四则运算及混合运算的方法,并能正确的进行计算。能根据四舍五入法求积商的近似值。

2.经过整理和复习,使学生会用方程表示简单情景中的等量关系,会用等式的性质解简易方程;能够用方程解决一些简单的实际问题。

3.经过整理和复习,使学生明白2、3、5的倍数的特征;理解奇数、偶数、质数、合数的含义,会分解质因数。

4.经过整理和复习,使学生掌握三角形、平行四边形、体形的面积计算方法,了解简单组合图形的面积计算方法。

5.经过整理和复习,使学生能在方格纸上根据给出的轴对称图形的一半画出另一半;能在方格纸上将简单图形旋转90度。

6.经过整理和复习,使学生明白折线统计图的作用,会用折线统计图来表示数据。能根据需要选择条形统计图或折线统计图表示数据;能根据统计结果作出简单的分析和确定。

7.经过整理和复习,使学生经历回顾本学期的学习情景,以及整理知识和学习方法的过程,激发学生主动学习的愿望,进一步培养反思的意识和本事。

周次资料备注

7-8分单元复习基础知识

9-10综合复习及检测

11-12查缺补漏阶段

(1)教会学生复习方法,先全面复习每一单元,再重点复习有关重点资料。然后引导学生进行单元训练,对于出错多的知识点再次进行讲评和训练。

(2)采用多种方法,比如学生出题,抢答,抽查,学生互批等方法,提高学习兴趣。

(3)加强补差,让优等生帮忙后进生。

(4)课堂上教会学生抓住每单元的知识要点,重点突破,加强解决问题本事的培养,并相互进行口算本事的培养。

(5)多采取独立思考、相互协作的复习方式。给学生留有较多的自主空间,充分利用小组互助的形式,经过多种复习活动发挥每个学生的特点和优势。对各类学生给予充分的信任和鼓励,师生共同努力,使不一样层次的学生都有较大提高和发展。

主题数学广角推理听课心得体会及感悟二

古人云:“学起于思,思起于疑”,有疑问才能思考和探究。课堂上教师是教学活动的组织者,教师只有精心设计贴近学生生活、有意义和富有挑战性的问题情境,让学生在心里产生一种悬念,进而达到以疑激学的目的。很多学生在幼儿园和小学低年级的剪纸课上,就已经会用对折的方法剪出左右两边形状、大小完全一样的图形。因此,现实中一些对称的图形学生在课前早已接触过,然而何谓“对称”,这一概念对于学生来说却是新鲜的。由此可见,如何让学生科学地认识并建立“对称”的概念是我这节课要达成的重要目标之一。因此,我设计“出示一个图形的一半让学生猜整个图形,在猜图游戏中最后出现半个花瓶,激发学生想办法剪出一个完整的花瓶”的这样一个活动,有效地帮助学生构建科学的“对称”概念,抓住对称的本质特征,让学生对“对称”的概念有更清晰的认识,也为其在生活中如何判断对称现象提供方法。

1.首先在动手剪对称图形的活动中加深体验。

“剪一剪”的活动,让学生先自己探索剪对称图形的方法,并尝试着剪一剪,当学生有不同的剪法时,可引导学生比一比:谁的剪法好?说说怎样剪,剪出来的图形才能对称?这样,让学生在具体实践活动中很自然地引出“对称轴”的概念。这一活动的开展,以激起学生动手操作的兴趣和欲望为前提,将观察、思考、操作有机的结合,充分感知对称图形及“对称轴”的概念。

2.观察对称现象,感知对称图形。

观察图片讨论:“这些图形有什么共同特点?”接着当学生交流了“这些图形两边都一样”时,教师追问:“你怎样证明它们两边都一样呢?”这时引导学生把图形对折后,发现图形的左右两边重合在了一起,只能看到图形的一半。这一活动的开展,是把学生观察到的形状让学生用对折的方法亲手验证。这一观察——讨论——动手验证的过程。让学生充分感受轴对称图形的特征。

3.在充分的练习中巩固。

给出轴对称图形和对称轴的名称以后,我没有更多的去强调定义。而是出示在学习和生活中常见的汉字、数字、字母、平面图形等让学生去判断是否是对称图形,画出对称轴等练习,让学生在练习中进一步去构建对称轴和轴对称图形的概念。让学生对轴对称图形和对称轴有一个更准确、更深刻的了解。

数学与生活紧密联系,教学中,要让学生带着数学走出课堂,走进生活去理解生活中的数学,去体验数学的价值。对称的物体给人一种匀称、均衡的感觉,一种美感。本节课我抓住对称图形的特点师生一起欣赏生活中一幅副精美的对称图片,给学生带来美的感受。

《轴对称图形》数学教学反思

本节课主要是画对称图形的对称轴。在新课导入时,我出示飞机图、奖杯图、蝴蝶图,问学生这些图有什么共同特征?设计此环节,可以引起学生对有关知识的回忆,并就对称轴的画法我为学生作了示范,说明对称轴一般应画成虚线,提出本节课重点研究对称轴,使学生明确了学习目标。

新授课时,我让学生折长方形纸的对称轴,一开始,学生只折了一条对称轴,我问了学生还可以怎么折?学生又折出了一种,我分别展示了两种折法。有一个学生说还有:沿对角线折,我让他折出来给大家看后,排除了沿对角线折的方法,学生明白了长方形只有两条对称轴。然后研究怎样画长方形的对称轴,让学生自主发现、找出规律:量出长度,并取中点再画。教学“试一试”时,因为有了探究长方形对称轴的基础,所以放手让学生尝试折纸、作图。

大部分学生找出了四条对称轴,还有小部分学生只找出了两条。在评讲时,通过操作,提高了后进生的认识。后面的练习是重点让学生画出一个轴对称图形的所有对称轴。

但是学生找不全,甚至把第2题的第四幅图也认为是对称图形。我用事先准备好的图形让学生折一折,进一步体会轴对称图形的对称轴条数不只一条。并概括出是正几边形就有几条对称轴。并强调学生要规范地去画。效果还可以。

主题数学广角推理听课心得体会及感悟三

学生的知识技能基础:学生在初二上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。在本章前面几节课中,又学习了一元二次方程的概念,并经历了用估算法求一元二次方程的根的过程,初步理解了一元二次方程解的意义;

学生活动经验基础:在相关知识的学习过程中,学生已经经历了用计算器估算一元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其解的欲望;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

教科书基于学生用估算的方法求解一元二次方程的基础之上,提出了本课的具体学习任务:用配方法解二次项系数为1且一次项系数为偶数的一元二次方程。但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。而数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课《配方法》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:

1、会用开方法解形如(x?m)2?n(n?0)的方程,理解配方法,会用配方法解二次项系数为1,一次项系数为偶数的一元二次方程;

2、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效模型,增强学生的数学应用意识和能力;

3、体会转化的数学思想方法;

4、能根据具体问题中的实际意义检验结果的合理性。

本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。

活动内容:1、如果一个数的平方等于4,则这个数是 ,若一个数的平方等于7,则这个数是 。一个正数有几个平方根,它们具有怎样的关系?

2、用字母表示完全平方公式。

3、用估算法求方程x2?4x?2?0的解?你喜欢这种方法吗?为什么?你能设法求出其精确解吗?

活动目的:以问题串的形式引导学生逐步深入地思考,通过前两个问题,引导学生复习开平方和完全平方公式,通过后一个问题的回答让学生进一步体会用估计法解一元二次方程较麻烦,激发学生的求知欲,为学生后面配方法的学习作好铺垫。

实际效果:第1和第2问选两三个学生口答,由于问题较简单,学生很快回答出来。第3问由学生独立练习,通过练习,学生既复习了估算法,同时又进一步体会到了估算法较麻烦,达到了激发学生探索新解法的目的。

活动内容:(1)工人师傅想在一块足够大的长方形铁皮上裁出一个面积为100cm2正方形,请你帮他想一想,这个正方形的边长应为 ;若它的面积为75cm2,则其边长应为 。(选1个同学口答)

(2)如果一个正方形的边长增加3cm后,它的面积变为64cm2,则原来的正方形的边长为 。若变化后的面积为48cm2呢?(小组合作交流)

(3)你会解下列一元二次方程吗?(独立练习)

x2?5; (x?2)2?5; x2?12x?36?0。

(4)上节课,我们研究梯子底端滑动的距离x(m)满足方程x2?12x?15?0,你能仿照上面几个方程的解题过程,求出x的精确解吗?你认为用这种方法解这个方程的困难在哪里?(合作交流)

活动目的:利用实际问题,让学生初步体会开方法在解一元二次方程中的应用,为后面学习配方法作好铺垫;培养学生善于观察分析、乐于探索研究的学习品质及与他人合作交流的意识。

实际效果:在复习了开方的基础上,学生很快口答出了第1问,为解决第二问做好了准备。第2问让学生合作解决,学生在交流如何求原来正方形的边长时,产生了不同的方法,有的学生直接开方先求出了新正方形的边,再减增加的边长,求出原来的正方形的边长;有的同学用了方程,设原正方形的边长为xcm,根据题意列出了一元二次方程(x?3)2?64;(x?3)2?48然后两边开方,根据实际情况求出了原来正方形的边长,这样,再一次经历了用一元二次方程解决实际问题的过程,并初步了解了开方法在一元二次方程中的简单应用。在第2问的基础上,学生很快解决了第3问。但学生在解决第4问时遇到了困难,他们发现等号的左端不是完全平方式,不能直接化成(x?m)2?n (n?0)的形式,因此大部分同学认为这个方程不能用开方法解,那么如何解决这样的方程问题呢?这就是我们本节课要来研究的问题(自然引出课题),为后面探索配方法埋好了伏笔。

活动内容1:做一做:(填空配成完全平方式,体会如何配方)

填上适当的数,使下列等式成立。(选4个学生口答)

x2?12x?_____?(x?6)2 x2?6x?____?(x?3)2

x2?8x?____?(x?___)2 x2?4x?____?(x?___)2

问题:上面等式的左边常数项和一次项系数有什么关系?对于形如x2?ax的式子如何配成完全平方式?(小组合作交流)

活动目的:配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征,在此通过几个填空题,使学生能够用语言叙述并充分理解左边填的是“一次项系数一半的平方”,右边填的是“一次项系数的一半”,进一步复习巩固完全平方式中常数项与一次项系数的关系,为后面学习掌握配方法解一元二次方程做好充分的准备。

实际效果:由于在复习回顾时已经复习过完全平方式,所以大部分学生很快解决四个小填空题。通过小组的合作交流,学生发现要把形如x2?ax的式子a如何配成完全平方式,只要加上一次项系数一半的平方即加上()2即可。而2

且讲解中小组之间互相补充、互相竞争,气氛热烈,使如何配成完全平方式的方法更加透彻。事实上,通过对配方的感知的过程,学生都能用自己的语言归纳总结出配成完全平方式的方法,这就为下一环节“用配方法解一元二次方程”打好基础。由此也反映出学生善于观察分析的良好品质,而这种品质是在学生自觉行为中得到培养的,体现了学生良好的情感、态度、价值观。 活动内容2:解决例题

(1)解方程:x2 8x-9=0.(师生共同解决)

解:可以把常数项移到方程的右边,得

x2 8x=9

两边都加上(一次项系数8的一半的平方),得

x2 8x 42=9 42.

(x 4)2=25

开平方,得 x 4=±5,

即 x 4=5,或x 4=-5.

数学广角推理听课心得体会及感悟 数学广角优化听课心得(九篇)

心得体会是指一种读书、实践后所写的感受性文字。那么心得体会怎么写才恰当呢?下面是小编帮大家整理的心...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?