电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

方程求解心得体会及感悟 学了方程的心得(8篇)

来源:互联网作者:editor2024-02-016

心得体会是指一种读书、实践后所写的感受性文字。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?以下我给大家整理了一些优质的心得体会范文,希望对大家能够有所帮助。

推荐方程求解心得体会及感悟一

本节课讲的是七年级《数学》下册第八章第三节的第一课时——用二元一次方程组解决实际问题,在学生已经熟练掌握二元一次方程组的解法的基础上,通过对实际问题审,设,列,解,答;经历建立二元一次方程组这种数学模型解决实际问题的过程,体验用方程组解决实际问题的一般方法,进一步提高分析问题与解决问题的能力,进而增强数学应用的意识。

(知识与技能)

1.经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;

2.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;

(过程与方法)

学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答

(情感态度与价值观)

培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。

(教学重点)以方程组为工具分析,解决含有多个未知数的实际问题

(教学难点)确定解题策略,比较估算与精确计算

教法设计:回顾练习(5分钟),自主探究(5分钟),小组交流(5分钟),成果展示(10分钟),疑难点拨(10分钟),课堂运用(5分钟),小结发言(5分钟)。

教法设计意图

1.回顾练习

内容:

用适当的方法解方程组

(2)既是方程的解,又是方程的解是()

a.b.c.d.设计意图:巩固二元一次方程组的解法

2.自主探究

出示问题:养牛场原有30只母牛和15只小牛,一天约需用饲料675一周后又购进12只母牛和5只小牛,这时一天约需用饲料940kg.饲养员李大叔估计平均每只母牛1天约需用饲料18~20kg,每只小牛1天约需用饲料7~8kg.你能否通过计算检验他的估计?

为了解决这个问题,请认真看p.105页的内容.

思考:判断李大叔的估计是否正确的方法有2种:

(1)先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.

(2)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.

5分钟后谁能帮助李大叔解决问题,并能解决简单的实际问题?

学生按照自学指导看书,教师巡视,确保人人学得紧张高效.

设计意图:引导学生独立思考,培养自主学习的能力

3.小组交流

组内成员讨论各自的探究成果,对不足和错误进行补充与更正

最终提炼出最佳方法.

设计意图:培养合作学习的习惯

4.成果展示

各组在黑板上展示解题的方法(也就是设,列的步骤),然后由发言人讲解详细的做法.

设计意图:培养分析与解决问题能力

5.疑难点拨

(1)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量——列出方程组

(2)方法的多样——2种解法

设计意图:突破难点,打开思考路线,指导规范解题

6.课堂运用

实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你帮助确定表中的数据.

捐款(元)

5

10

20

50

人数

6

7

设计意图:巩固解决实际问题的方法与步骤

7.小结发言

谈出本节课的收获与困惑

设计意图:通过各小组的小结,从审,设,列,解,答五步规范实际问题的解法.

作业安排一定要按照学生的层次性分类定量的进行(我一般将学生分成三类:特优生,优秀生,待优生)

设计意图:从不同层次有效的提高学生对知识的掌握程度

推荐方程求解心得体会及感悟二

1.教材的地位和作用

二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

2.教学目标

知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

3.重点、难点

重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

难点:在实际生活中二元一次方程组的应用。

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习旧知,温故知新

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?

设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数 负的场数=总场数,

胜场积分 负场积分=总积分。

这两个条件可以用方程

x y=10

2x y=16

表示:

上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.

把两个方程合在一起,写成

x y=10

2x y=16

像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

(3)发现问题,探求新知

满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。

x xy

y

上表中哪对x、y的值还满足方程②。

一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

(4)分析思考,加深理解

通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。

(5)强化训练,巩固双基

课堂练习:

设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。

练习2:已知下列三对数值:

哪一对是下列方程组的解?

(设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

(6)小结归纳,拓展深化

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这个问题:

①通过本节课的学习,你学会了哪些知识;

(7)布置作业,提高升华

教科书第89页1、第90页第1题。

以作业的巩固性和发展性为出发点,我设计了两个题,不仅是对本节课内容的一个反馈,也是对本节课知识的一个巩固。总的设计意图是反馈教学,巩固提高。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到状态。

本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:

1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。

2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。

3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。

推荐方程求解心得体会及感悟三

实际问题与二元一次方程组题型归纳

知识点一:列方程组解应用题的基本思想

找出题目中的等式关系。应用题中每道题目给出的已知条件基本上都得用到。

知识点二:列方程组解应用题中常用的基本等量关系

1.路程问题:

(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线段,用图便于理解与分析。其等量关系式是:两者的行程差=开始时两者相距的路程;路程/总量=速度乘以时间。

(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。这类问题的等量关系是:双方所走的路程之和=总路程。

(3)航行问题:①船在静水中的速度+水速=船的顺水速度;

 ②船在静水中的速度-水速=船的逆水速度;

 ③顺水速度-逆水速度=2乘以水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量.

3.商品销售利润问题:

(1)利润=售价-成本(进价);(2)利润率=利润/成本;(3)利润=成本(进价)×利润率;

注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。打几折就是按标价的十分之几或百分之几十销售。(例如八折就是按标价的十分之八即五分之四或者百分之八十)

4.储蓄问题:

(1)基本概念

①本金:顾客存入银行的钱叫做本金。 ②利息:银行付给顾客的酬金叫做利息。

③本息和:本金与利息的和叫做本息和。 ④期数:存入银行的时间叫做期数。

⑤利率:每个期数内的利息与本金的比叫做利率。 ⑥利息税:利息的税款叫做利息

方程求解心得体会及感悟 学了方程的心得(8篇)

心得体会是指一种读书、实践后所写的感受性文字。心得体会对于我们是非常有帮助的,可是应该怎么写心得体...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?