电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

2012年高考理科数学试题(天津卷)及参考答案.doc

2012年高考理科数学试题(天津卷)及参考答案.doc_第1页
1/22
2012年高考理科数学试题(天津卷)及参考答案.doc_第2页
2/22
2012年高考理科数学试题(天津卷)及参考答案.doc_第3页
3/22
2012年普通高等学校招生统一考试数学天津(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)i是虚数单位,复数7i=3i(A)2+i(B)2–i(C)-2+i(D)-2–i(2)设R,则“0”是“f(x)cos(x)(xR)为偶函数”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分与不必要条件(3)阅读右边的程序框图,运行相应的程序,当输入x的值为-25时,输出x的值为(A)-1(B)1(C)3(D)9(4)函数f(x)2xx32在区间(0,1)内的零点个数是(A)0(B)1(C)2(D)3(5)在(2x21)5的二项展开式中,x的系数为x(A)10(B)-10(C)40(D)-40(6)在ABC中,内角A,B,C所对的边分别是a,b,c,已知8b=5c,C=2B,则cosC=(A)7(B)72525(C)7(D)2425251/22(7)已知ABC为等边三角形,AB=2,设点P,Q满足APAB,AQ(1)AC,R,若,则=(A)1(B)1222(C)110(D)32222(8)设m,nR,若直线(m1)x(n1)y20与圆(x1)2(y1)21相切,则m+n的取值范围是(B)(,13][13,)(A)[13,13](C)[222,222](D)(,222][222,)第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.(9)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_________所学校,中学中抽取________所学校.(10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为_________m3.(11)已知集合,集合B{xR(xm)(x2)0},且AB(1,n),则m=__________,n=__________.(12)已知抛物线的参数方程为x2pt2,(t为参数),其中p>0,焦点为F,准线为.y2ptl过抛物线上一点M作l的垂线,垂足为E.若EF=MF,点M的横坐标是3,则p=_________.2/22(13)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D.过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=3,则线段CD的长为____________.2(14)已知函数yx21的图象与函数ykx2的图象恰有两个交点,则实数k的取x1值范围是_________.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)已知函数f(x)sin(2x)sin(2x)2cos2x1,xR.33(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间[,]上的最大值和最小值.44(16)(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记XY,求随机变量的分布列与数学期望E.(17)(本小题满分13分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(Ⅰ)证明PC⊥AD;(Ⅱ)求二面角A-PC-D的正弦值;(Ⅲ)设E为棱PA上的点,满足异面3/22直线BE与CD所成的角为30°,求AE的长.(18)(本小题满分13分)已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1b12,a4b427,S4b410.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)记Tnanb1an1b2a1bn,nN,证明Tn122an10bn(nN).(19)(本小题满分14分)设椭圆ax22by221(ab0)的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.(Ⅰ)若直线与的斜率之积为1,求椭圆的离心率;2(Ⅱ)若,证明直线的斜率满足(20)(本小题满分14分)已知函数f(x)xln(xa)的最小值为0,其中a0.(Ⅰ)求a的值;(Ⅱ)若对任意的x[0,),有f(x)≤kx2成立,求实数k的最小值;(Ⅲ)证明n2ln(2n1)2(nN).i12i14/22试卷解析【试卷总评】今年天津市高考理科数学试卷所涉及...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2012年高考理科数学试题(天津卷)及参考答案.doc

确认删除?