巴中市2019年高中阶段教育学校招生统一考试数学试卷(全卷满分150分,12分钟完卷)第I卷选择题(共40分)一、选择题(本试卷共10个小题,每小题4分,共40分)1.下列四个算式中,正确的是()C.(a5)4a9D.a5a4aA.aa2aB.a5a42a2.在平面直角坐标系中,已知点A(-4,3)与点B关于原点对称,则点B的坐标为()A.(-4,-3)B.(4,3)C.(4,-3)D.(-4,3)3.企业家陈某,在家乡投资9300万元,建立产业园元2万亩,将9300万元用科学记数法表示为()A.93×106元B.9.3×108元C.9.3×107元D.0.93×108元4.如图是由一些小立方体与圆锥组合而成的立体图形,它的主视图是()axy4x23x5.已知关于x,y的二元一次方程组by4的解是y2则ab的值是()A.1B.2C.-1D.06.下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是矩形C.对角线互相垂直的矩形是正方形D.四边相等的四边形是正方形7.如图所示,是巴中某校对学生到校方式的情况统计图,若该校骑自行车到校的学生有200人,则步行到1校的学生有()C.125人D.180人A.120人B.160人8.如图平行四边形ABCD,F为BC中点,延长AD至E,使DE∶AD=1∶3,连结EF交DC于点G,则SDEG:SCGF=()A.2∶3B.3∶2C.9∶4D.4∶99.如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.15B.30C.45D.6010.二次函数yax2bxc(a0)的图象如图所示,下列结论①b24ac;②abc0;③2abc0;④abc0.其中正确的是()A.①④B.②④C.②③D.①②③④第II卷非选择题(共110分)二、填空题(本大题共5个小题,每小题4分,共20分)yx111.函数x3的自变量x的取值范围.12.如果一组数据4,a,5,3,8,其中平均数为a,那么这组数据的方差是.yk13.如图,反比例函数x(x0)经过A、B两点,过点A作AC⊥y轴于段C,过点B作BD⊥y轴于点2D,过点B作BE⊥x轴于点E,,连接AD,已知AC=1,BE=1,S矩形ODBE=4,则SACD=.x2m2m14.若关于x的分式方程x22x有增根,则m的值为.15.如图,等边三角形ABC内有一点P,分别连结AP、BP、CP,若AP=6,BP=8,CP=10,则SABPSACP.三、解答题(本大题共11个小题,共90分)16.(5分)(1)2(3)0322sin608计算:217.(5分)x2y21x已知实数x、y满足x3y24y40,求代数式xyx22xyy2x2yxy2的值.18.(8分)如图,等腰直角三角板如图所示放置,直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.3①求证:EC=BD;②若设△AEC三边分别为a,b,c,利用此图证明勾股定理.19.(8分)△ABC在边长为1的正方形网络中如图所示.①以点C为位似中心,作出△ABC的位似图形A1B1C1,使其位似比为1∶2,且A1B1C1位于点C的异侧,并表示出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形A2B2C2③在②的条件下求出点B经过的路径长.20.(8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户,已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与用450元购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?421.(10分)如图所示的是某班部分同学衣服上口袋的数目.①从图中给出的信息得到学生衣服上口袋数目的中位数为,众数为.②根据上图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5x7的概率.22.(8分)已知关于x的一元二次方程x2(2m1)xm210有两个不相等的实数根.①求m的取值范围;②设x1,x2是方程的两根且x12x22x1x2170,求m的值.523.(8分)某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直,某校“教学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离。(参考数据:sin650.91,cos650.42,tan652.14)24.(8分)如图,一次函数y1k1xb(k1,b为常数,k10)的图象...