数学与建筑教学心得体会报告 学建筑的心得体会(5篇)
学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。那么心得体会该怎么写?想必这让大家都很苦恼吧。下面我给大家整理了一些心得体会范文,希望能够帮助到大家。
最新数学与建筑教学心得体会报告一
七年级学生往往不善于课前预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出什么问题和疑点。那到底该如何预习呢?预习的步骤有哪些呢?
先粗略课文浏览教材的有关内容,大致了解相关内容,掌握本书知识的基本框架,同时了解新课的重点和难点。
对重要概念、公式、法则、定理反复阅读、仔细体会、认真思考,注意知识的发展形成过程,对难以理解的概念作出标记,以便新学期上课时带着问题听课效率更高。通过课前预习能够使学生知道那些地方容易,哪些地方难,会使今后的听课变得更有针对性,注意力更集中,从而提高了听课的效率。大量的事实证明,养成良好的预习习惯,能使孩子从被动学习转为主动学习,同时能逐步培养孩子的自学能力。有了自学能力,就好比掌握了打开知识宝库的钥匙,就能源源不断的获取新知识,汲取新的营养。
。例如,在单项式的概念(数字和字母积的代数式是单项式)中,很多同学忽略了“单个字母或数字也是单项式”。
这样就不能很好的将学到的知识点与解题联系起来。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
看书、看笔记、看习题,通过看,回忆、熟悉所学内容;
列出相关的知识点,标出重点、难点,列出各知识点之间的网络关系,这相当于写出总结要点;
在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。
归纳出体现所学知识的各种题型及解题方法。
根据所总结的内容编一些顺口溜;如:总结不等式组解集时,“大大取大,小小取小,大小小大中间找,大大小小找不着。”证明成比例线段时,可总结为“遇等积化等比,横看竖看定相似,不想死,别生气,等线等比来代替;遇等比化等积,想到射影与圆幂” 。
总之,七年级是学生知识奠定的根基时期,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,学法与教法结合,课堂与课后结合,教师指导与学生探求结合,家长督导和学生自觉学习相结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法,为日后进一步进行数学学习打下良好的基础。
最新数学与建筑教学心得体会报告二
1证明一个三角形是直角三角形
2用于直角三角形中的相关计算
3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方
用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:
勾2 股2=弦2
亦即:
a2 b2=c2
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32 42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:
弦=(勾2 股2)(1/2)
即:
c=(a2 b2)(1/2)
定理:
如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方 b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。
如果三角形的三条边a,b,c满足a^2 b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3 4*4=x*x,x=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)
来源:
毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明
数学与建筑教学心得体会报告 学建筑的心得体会(5篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。