初中数学限时讲座心得体会范文 数学课堂讲座心得体会(六篇)
我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。那么我们写心得体会要注意的内容有什么呢?下面是小编帮大家整理的心得体会范文大全,供大家参考借鉴,希望可以帮助到有需要的朋友。
推荐初中数学限时讲座心得体会范文一
二、在教师深刻领会教学思想的同时,还应当做好学生的思想工作。
首先向学生说明人具有巨大的自主的学习潜能,使他们相信自己的能力;其次,让学生明确自主学习是时代的要求,能使自己成为学习的主人,能提高自己的独立学习、独立思考等各种能力,只有学会学习,才能在将来竞争激烈的社会上求得生存。但学生的思想工作不是靠生硬的说教能左右的,还应该让学生在教学中去感受,明确的学习目标,从而调动学生的学习积极性和主动性,达到提高课堂教学效果的作用,开发学生的潜能,促进学生产生自学课本的欲望。要求他们多动脑,敢想敢做。尽可能的去营造学习一种氛围,愿意积极地学习。
三、培养学生的合作精神,学会学习的方法
新课程倡导的是学生的合作与学习,有许多问题需要学生共同合来完成,我们在让学生独立的情况下,也要注意合作的重要。况且在当今社会上,有很多工作不是一个人能完成的,需要的是一种合作。为此结合课本知识与生活,组织学生进行讨论。同时在学习时,有时也要独立完成,当遇到困难时,应该多看看题目,是不是漏掉了条件或是没有把条件用完就在做题,养成好的习惯学会学习。当他们做题遇到困难时问我,我首先问他们题目的意思弄清了吗?读几遍?学会从题目中找问题,而不是问老师。让他们知道老师也是从题目中回答你的。让他们学会从题目中找自己的疑问。另外重视数学知识在实际生活中的应用。我们的数学知识来源于生活,但也要应用到我们的生活中去。由于是新课程改革的要求,会解决一些生活中的实际问题。增加学生对学习数学的兴趣和对数学的认识,学习有用得数学,所以教学时就结合我们生活中的问题来讲。
如“二次函数的应用”中有关实际问题,“有一河面上有座桥的桥面是抛物线的拱形桥,桥洞离水面的最大高度为4米,跨度为10米,一艘宽4米,高3.5米的船要经过此桥,问能不能经过?”激起他们学习数学的兴趣。
四、培养学生的创新精神和创新能力,与课程改革的发展要求相适应
初中学生刚刚进入少年期,机械记忆力较强,分析能力仍然较差。鉴此,要提高初一年级数学应用题教学效果,务必要提高学生的分析能力。这是每一个初中数学老师值得认真探索的问题。通过我对新课程这几年的研究, 结合我平常的教学工作,有了以下几点工作体会:
1.总体把握教学要点,如该学年,该学期有哪些知识点,重点是什么,难点是什么,这样在平常教学中才有目标。
2.注意和学生一起探索各种题型,我发现学生都有探求未知的特点,只要勾起他们的求知欲与兴趣,学习劲头就上来了,如每节课后如有时间,我都出几题有新意,又不难的相关题型,与学生一起研究。
3.每节新课后注意反馈,主要作业与小测中发现学生掌握知识的不足之处,及时加以订正。
4.要进行一定数量的练习,我反对题海战术,但用相当数量题目进行练习却是必要的,练习时要有目的,抓基础与重难点,渗透数学思维,强调一点是老师在练习要注重学生数学思维的形成与锻炼,有了一定的思维能力与打好基础,可以做到用一把钥匙开多道门。
5.就是考前复习中要认真研究与整理出考试要考的知识点,重难点,要重点复习的题目类型,难度,深度。这样复习时才有的放矢,复习中什么要多抓多练,什么可暂时忽略,这一点很重要,会直接影响复习效果与成绩。当然,要做到这一点,并把握得准,必须要有相当长时间的经验积累与总结,甚至挫折,否则不行。而我仍在不断摸索中,但我相信,只要肯下功夫,就会有所领悟。
6.抓好后进生工作,后进生会影响全班成绩与平均分,所以要花力气使大部分有希望的后进生跟得上。例如,在课后,只要有时间,我一般会留部分成绩不足的学生再进行一次复习讲解或小测,时间不要太多,十几或二十分钟,但一学期下来,就积少成多,对提高成绩会有帮助,但要注意两点,一是其它科任老师协调好时间,二是被留下的学生的思想工作要过关,以免因被留下产生抵触情绪,就会影响复习效果。
以上六个方面的看法只有根据自身与本班实际情况综合运用,有机结合,才可能有一定效果。教与学是双长的,教的技巧怎样高,也需要学的配合,农村学生学习基础差,学习习惯差,怎样让他们以更好的学来配合教师的教,需要不断地探索前行。 总之,在新课程改革下,我们的课堂就是学生的课堂,要把学生的学习兴趣激发出来,学生潜能开发出来,教会学习的方法,提升学力。学生是学习的主人,教师是学生学习的组织者、引导者与合作者。向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,培养学生利用数学知识分析问题和解决问题的能力。老师要能多思考,多探索,多创新,上好每一堂课,讲好每一道题。只有这样才能走好教改之路,才能提高自己的教学成绩。适应新形式的教学要求。
推荐初中数学限时讲座心得体会范文二
>
《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。
>
(一)知识与技能:
1.了解二元一次方程概念;
2.了解二元一次方程的解的概念和解的不唯一性;
3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
(二)数学思考:
体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。
(三)问题解决:
初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。
(四)情感态度:
培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。
>
教学重点:二元一次方程及其解的概念。
教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
>
教法:情境教学法、比较教学法、阅读教学法。
学法:阅读、比较、探究的学习方式。
>
1.创设情境,引入新课
从学生熟悉的姚明受伤事件引入。
师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。
(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?
(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?
设姚明投进了x个两分球,罚进了y个球,可列出方程。
(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗?
设易建联投进了x个两分球,y个三分球,可列出方程。
师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?
从而揭示课题。
(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。)
2.探索交流,汲取新知
概念思辨,归纳二元一次方程的特征
师:那到底什么叫二元一次方程?(学生思考后回答)
师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)
师:根据概念,你觉得二元一次方程应具备哪几个特征?
活动:你自己构造一个二元一次方程。
快速判断:下列式子中哪些是二元一次方程?
①x2 y=0②y=2x
4③2x 1=2x ④ab b=4
(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)
二元一次方程解的概念
师:前面列的两个方程2x y=36,2x 3y=16真的是二元一次方程吗?通过方程2x 3y=16,你知道易建联可能投中几个两分球,几个三分球吗?
师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)
使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。)
二元一次方程解的不唯一性
对于2x 3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?
(设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解
例:已知方程3x 2y=10,
(1)当x=2时,求所对应的y的值;
(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;
(3)用含x的代数式表示y;
(4)用含y的代数式表示x;
(5)当x=负2,0时,所对应的y的值是多少?
(6)写出方程3x 2y=10的三个解.
(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。)
大显身手:
课内练习第2题
梳理知识,课堂升华
本节课你有收获吗?能和大家说说你的感想吗?3.作业布置
必做题:书本作业题1、2、3、4。
选做题:书本作业题5、6。
设计说明
本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解、不止一个解、无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。
在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊、一般、特殊”的教学流程,以期突破难点。首先抛出问题“这几个解你是如何求的”,
此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元
初中数学限时讲座心得体会范文 数学课堂讲座心得体会(六篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。