电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

主题初中数学延时托管心得体会报告(六篇)

来源:互联网作者:editor2024-02-011

心得体会是指一种读书、实践后所写的感受性文字。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?下面是小编帮大家整理的心得体会范文大全,供大家参考借鉴,希望可以帮助到有需要的朋友。

主题初中数学延时托管心得体会报告一

一、积极配合xxxx市教研室的工作安排,协助名师工作室开展学科教研活动。

二、不断提高自身的理论素养,积极阅读教育教学报刊、杂志、专业理论书籍,并写好读后感。

1、每月制定一份读书计划。结合自己教育教学工作实际,明确读书内容,做好个人读书记录,

2、每周推荐一篇优秀文章。建立读书博客,每周向大家推荐一篇好文章并发布在博客上,方便其他教师阅读。

3、每周写一篇读书笔记。每天尽量精读书籍一小时、泛读一小时,每周至少看刊物一本。

4、每月写一篇读书心得。一个月内重点精读和泛读教育教学书籍各二本。每月撰写一篇学习心得,字数不少于500字。

5、每年参加一次论文评选。养成写教育教学工作案例、随笔的习惯,积极参加各级各类论文评选,一年参与市级及以上评选不得少于一篇。

三、做好本土教辅的设计与反馈跟踪,及时聆听使用者的声音,引领大家有效使用。

四、增强科研意识和科研能力,积极开展科研工作。在条件成熟时,开展课题研究,从本市学生的实际学情出发,从目前教师教学中存在的问题出发,踏踏实实做一个有效的课题。

五、上好公开课,协助做好相关教育教学讲座。

六、积极参与教研网的建设与维护,坚持上传优秀教学资源;

七、创造品牌意识,形成个人教学风格,带教青年教师,互相听课,交流思想,相互学习,共同进步。

主题初中数学延时托管心得体会报告二

1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;

2、使学生分清常量与变量,并能确定自变量的取值范围。

3、会求函数值,并体会自变量与函数值间的对应关系。

4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法。

5、通过函数的教学使学生体会到事物是相互联系的。是有规律地运动变化着的。

教学重点:了解函数的意义,会求自变量的取值范围及求函数值。

教学难点:函数概念的抽象性。

(一)引入新课:

上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数。

生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?

1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系。

2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系。

解:1、y=30n

y是函数,n是自变量

2、n是函数,a是自变量。

(二)讲授新课

刚才所举例子中的函数,都是利用数学式子即解析式表示的。这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义。如第一题中的学生数n必须是正整数。

例1、求下列函数中自变量x的取值范围。

(1)(2)

(3)(4)

(5)(6)

分析:在(1)、(2)中,x取任意实数,与都有意义。

(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求。

同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且。

第(5)小题,是二次根式,二次根式成立的条件是被开方数大于、等于零。的被开方数是。

同理,第(6)小题也是二次根式,是被开方数,小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零。

注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可。教师可将解题步骤设计得细致一些。先提问本题的分母是什么?然后再要求分式的分母不为零。求出使函数成立的自变量的取值范围。二次根式的问题也与次类似。

但象第(4)小题,有些同学会犯这样的错误,将答案写成或。在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用。限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”。说明这里与是并且的关系。即2与-1这两个值x都不能取。

例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元。

(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;

(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围。

解:(1)

(x是正整数,

(2)若变速车的辆次不小于25%,但不大于40%,则收入在1225元至1330元之间

总结:对于反映实际问题的函数关系,应使得实际问题有意义。这样,就要求联系实际,具体问题具体分析。

对于函数,当自变量时,相应的函数y的值是。60叫做这个函数当时的函数值。

例3、求下列函数当时的函数值:

(1)————(2)—————

(3)————(4)——————

注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应。以此加深对函数的理解。

(二)小结:

这节课,我们进一步地研究了有关函数的概念。在研究函数关系时首先要考虑自变量的取值范围。因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值。另外,对于反映实际问题的函数关系,要具体问题具体分析。

作业:习题13.2a组2、3、5

今天的内容就介绍到这里了。

主题初中数学延时托管心得体会报告三

新学期已到来,我们又要投入到紧张、繁忙而有序地教育教学工作中,怎样做好这些艰巨而富有重大意义的工作,使自己今后的教学工作中能有效地、有序地贯彻新的教育精神,提高自身的业务能力,围绕我校新学期的工作计划要求制定初一数学教学计划:

一、指导思想

教育学生掌握初中数学学习常规,掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽像、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来

主题初中数学延时托管心得体会报告(六篇)

心得体会是指一种读书、实践后所写的感受性文字。心得体会对于我们是非常有帮助的,可是应该怎么写心得体...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?