电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

大数运算心得体会报告 大数运算心得体会报告怎么写(六篇)

来源:互联网作者:editor2024-02-032

心中有不少心得体会时,不如来好好地做个总结,写一篇心得体会,如此可以一直更新迭代自己的想法。那么你知道心得体会如何写吗?以下我给大家整理了一些优质的心得体会范文,希望对大家能够有所帮助。

关于大数运算心得体会报告一

于大部份营销者来说,网站再定向(onsite retargeting)是其中一个最重要的营销手段,所谓网站再定向的意思是对曾访问您网站的用户进行宣传,在他们浏览网络时向其展示广告。此手段之所以重要是因为在第一次接触中真正转化为购买的只占2%,而没有产生购买就离开网站的人群体高达98%。网站再定向的威力在于它能够帮助你吸引很多的潜在客户,由于这些用户之前已经访问了您的网站一次,这意味着他们确实对您的产品和服务感兴趣。当你不断向这些用户显示相关的广告,将能够吸引他们回访并完成购买。理论上,网站再定向技术听起来完美,但执行起来,却可能让很多广告主走入死胡同,因为它只能够覆盖到旧有的访客,而无法接触新访客。对于广告主来说,网站再定向是一把双刃刀,它虽然能带来绝佳的roi,却由于覆盖度不足,会在无形中扼杀销售机会。

其实无论是广告数据或购买行为数据,网络都能记录下来,而网络的实时记录特性,让它成为当下广告主实现定位营销的不二之选。随着技术不断革新,广告主精细化定位的需求也不断得到满足。在随后的篇幅中,我们会简单地对比几大定位技术,并通过电商案例分析来讨论如何让这些数据技术协同起来,促成客户从浏览广告到掏钱购买的转化,实现广告主的收益最大化。

网络营销的精细化定位潜力只有在大数据的支持下才能完全发挥出来。图中的数据金字塔划分出了数据的四个层级。最底层是广告表现数据,是关于广告位置和其表现的信息。具体而言,就是广告位的尺寸、在网页的位置、以往的点击率、可见曝光(viewable impreion)等指标。

再上一层就是受众分类数据。如今,市场上的数据提供商可以通过用户的线上和线下的行为,来收集到广告受众的兴趣、需求等数据。这些不会涉及个人真实身份的信息会被分析,并划分为不同的群組,例如性价比追求者、网购达人等。有了受众分类数据,广告主可以在互联网上按自己的需求和品牌的特性来投放。受众分类数据的针对性更强,也能带来比单纯依赖广告表现数据更好的点击率与转换率,因为它提供了消费者行为和偏好等宝贵信息。

第三层是搜索动机数据。搜索再定向是个用于发掘新客户的技术。它的出现让我们能够发掘出那些很可能会购物的用户,因为他们已经开始搜索与广告主产品相关的信息了。那些具有高商业价值的数据可以进一步被筛选出来,广告主可以将具有高购买意愿的人们再定向到自己的产品信息上来。

而位居数据金字塔顶端的是站内客户数据,这指的是用户在广告主网站上的用户行为数据,包括了用户浏览的页面,下载的信息,以及加入购物车的商品等数据。网站用户通常是那些已经了解过品牌并且对公司也熟悉的一群人。

对于广告主来说,金字塔四层的数据都独具价值。举例而言,广告表现数据是每个广告主都首先会关注的信息,因为这些信息在大多数广告管理平台和广告交易平台都能轻易获得的。同时,那些与用户需求和偏好相关的数据,能够助力广告主更好地实现精细化营销。因此,要想针对性地影响消费者购买路径的每个过程,我们就需要把这四层的数据分析整合,才能制定一个更全面的营销方案。

以下,我们将分享一个真实的案例,让广告主明白应当如何打通各层数据,制定覆盖消费者购买路径的精准定位的营销方案。

案例分享

背景:爱点击的客户,国内最知名的电子商务网站之一,希望能提高roi(投资回报率)和线上交易数量

挑战:客户已经使用了网站再定向技术来实现一个较好的roi,但是,从再站内定向所带动的交易数量开始有下降的趋势。

优化策略︰利用多重数据的整合,提升转化漏斗每一阶段的人群数目,以提升总转化量

第一步:网站再定向

广告主会发现网站内再定向带来的购买转化量有限,这是因为大部份广告主只会再定向曾经将商品加入购物车的访客。要想提升网站再定向的效果,最优的方法是根据用户浏览过的页面进行属性分类,并呈现具有针对性的内容。具体参考下图:

有了全面的追踪和分类,再定向受众数量的基数大幅增加。在短短两个星期内,交易数量显着提升,尤其是来自老访客的成交量更是大幅提升44%。

第二步:搜索再定向(search retargeting)及购买第三方受众分类数据

一方面,再定向可以有效地召回老访客,增大重复进入网站及购买的可能性。但同时,广告主还应该考虑怎么能增加新访客,以保证转化漏斗有足够的新增流量。

首先,我们利用搜索关键词捕捉有兴趣的用户,然后储存有关的用户数据,最后,在交易平台上将合适的广告呈现给该用户。此外,我们还会关注第三方受众分类数据中那些有着同样行为特征的用户信息,整合在一起进行精准投放。

在进行搜索再定向及购买受众数据后,新客户所带来的成交大幅度上升254%,广告效果花费cpa下降29%,同时增加该网站整体的浏览量。

第三步:利用机器学习(machine learning)进一步扩大客户的数量

用户来进行定位广告投放。xmo的算法可以对比客户的crm消费者数据与第三方受众数据,并预测出哪些网络用户会有特定的购买倾向。在这个案例中,xmo能通过机器学习来不断产生新的受众,平均每周能够细分出一个有着230万样本的人群。通过将广告投放到我们已有的目标受众群和由机器学习锁定的新目标受众,我们可以看到非常喜人的广告效果,虽然cpa轻微上升14%,但新客户成交量大幅增长26%说明了机器学习能有效地为广告主发掘新客户。

什么是机器学习(machine learning)? (摘自维基百科wikipedia) 机器学习是人工智能的核心,根据数据或以往的经验,通过设计算法来模拟背后机制和预测行为,并获取新的数据。这是一个重新组织已有的知识结构使之不断改善自身性能的过程。研究者可以

通过机器学习来抓取现有数据的特征来预测未知的概率分布,找到新的具有相同特征的数据并加入库中。机器学习中最关键的就是开发出能智能识别复杂模式并能智能化决策的算法。

观点总结

多渠道数据的整合可以在两方面帮助广告主提高广告表现。

首先,此举可以增加广告受众总数,并会为广告主赢得源源不断的访问量。第二,多渠道数据整合后的定向还能促进消费者购买漏斗的每一个过程,广告主通常利用网站再定向技术来召回“购物车放弃者”或者流失的老客户,但实际上,广告主应该把注意力放在现有客户和新客户的比例。 总而言之,从搜索动机数据,到受眾分类数据,到最终的机器学习,都能促进购买漏斗的顶端访客数量的增加。结合上创意的策略定制、精准的位置选择,客户的转化率将会提高,广告主也将挖掘出更多的商机。

关于大数运算心得体会报告二

职责:

1、负责公司大数据/hadoop/hive/hbase/flink等离线实时数据平台运维保障;

2、负责内部大数据自动化运维以及数据化运营平台开发工作;

3、负责hadoop/hbase等系统的业务监控、持续交付、应急响应、容量规划等;

4、深入理解数据平台架构,发现并解决故障及性能瓶颈,打造一流的数据平台;

5、持续的创新和优化能力,提升产品整体质量,改善用户体验,控制系统成本。

6、善于表达、理解客户数据服务需求,具备数据需求转化落地能力。

任职要求:

1、大学本科及以上学历,计算机或者相关专业;

2、深入理解linux系统,运维体系结构,精于容量规划、性能优化;

3、具备一定的开发能力,精通一门以上脚本语言;(shell/perl/python等),熟悉java等开发语言一种及以上优先;

4、具备很强的故障排查能力,有很好的技术敏感度和风险识别能力;

5、能够承受较大的工作压力,以结果和行动为准则,努力追求成功;

6、熟悉hadoop、hbase、hive、spark、tez等原理并具备管理,配置,运维经验;

7、熟悉分布式系统设计范型,有大规模系统设计和工程实现的了解者优先。

8、具有运营商流量数据加工处理经验者优先。

关于大数运算心得体会报告三

高校教育大数据的分析挖掘与利用

摘 要,本文从高校教育大数据的汇聚融合与挖掘应用的角度,分析了如何运用教育大数据技术推动大学管理和人才培养的创新改革的思路和方法。首先,分析了教育大数据对高校现代化、精细化、规范化管理的4个价值,其次,给出了高等教育大数据技术平台的基本技术架构,第三,结合教育大数据实际应用,介绍了陕西省高等教育质量监管大数据中心、mooc中国、西安交通大学教学质量综合监控与评价三个典型案例,最后,提出了教育大数据分析挖掘中的3项基础性关键技术

关键词,高等教育,大数据,分析,挖掘

高校大数据分析挖掘至少有四个典型价值, 一是使得大学的管理更加精准高效,可以朝着智慧治理、分类管理、过程监控、趋势预测、风险预警的方向发展,真正实现基于大数据分析规律的精准治理,改变管理的模糊性, 二是可以更加准确地分析评价课堂教学的质量,过去我们对课堂、对老师的评价是定性和模糊的,而在大数据智慧课堂的模式下,可以真正实现采集样本的持久化,采集方式

的多元化,挖掘手段的多样化,分析技术多维度,通过这些方式可以提高课堂教学的质量, 三是使得教和学更加智慧,更加有效。对学生来说,老师可以了解学生学习的进展情况,发现学习兴趣点,以及对老师讲的哪些内容理解或者不理解,学习路径分析及课程推荐等等。对教师而言,不仅可以跨校跨地域分享他人的优秀课程,而且可以对学习者进行精准分类,进行个性化指导, 四是资源服务的个性化、精准化推荐与服务,学习绩效的个性化评价,以及个性化教学管理,个性化手机内容推送等等,这些功能将有效提升教与学的效率和质量

首先,我们对高等教育大数据技术平台有一个总体的顶层设计,如图1所示。这不仅是学校自己要有一个大数据的管理平台或者是数据中心,而且也是面向区域乃至全国的平台。教育部评估中心正在努力建立国家级高等教育教学质量监控大数据中心,陕西省也是这样考虑的。数据来自高校、教育管理部门以及行业、第三方、企业用人单位等等各方面采集的数据,该数据平台既有大学的业务数据、课程资源,也有政府部门的统计数据,还有学生网上学习的日志数据,用户产生的ugc数据,比如微信、微博、论坛等等的数据,基于大数据平台,开展面向学习者、面向高等教育管理机构、教师、高校等提供服务,并和教育部评估中心、主管部门等

进行数据交换与对接

显然,这样一个大数据平台必须是一个高性能的计算平台,没有这样的基础设施一切无从谈起,所以去年我们学校花了很大的力气做了两件事,一个是把校内二级单位原来小的集群计算进行整合,形成学校统一的高性能云计算平台,既面向校内的科学研究、人才培养提供服务,其实也可以为社会提供合作共建共享模式。目前,我们已建立了一种自我造血机制,四两拨千斤,以这个平台吸引更多的外部资源,努力扩展平台的性能和应用

目前,我校的高性能平台除了应用于材料、航天、能动、信息等大型科学计算之外,还开展了以下三项典型的大数据应用

案例1,陕西省高等教育质量监控与评估大数据应用

图2所示的是陕西省高等教育的整体架构。其数据基础是来自陕西省100多所高校的各种办学状态数据,有将近700个表格,以及陕西省教育厅各个职能部处的各种各样的管理数据,此外还有行业第三方提供的数据,包括招生、就业数据等等,这个平台上我们开展预测预警、查询在线分析、信息发布、统计决策等等,主要是为省级教育管理部门、评估机构、教育管理机构提供各种各样的办学状况的分析、统计、关联分析

建设全省高等教育大数据服务平台,实时采集各高校的办学状态数据,其根本目的是为了汇聚全省各高校的办学状态数据,打破数据孤岛,融合各方数据,实现横向关联比较、纵向历史分析,提供精准服务,支持科学决策

首先,该平台面向省教育厅提供了11项功能,从根本上解决了原来各处室间的数据孤岛的问题,实现了数据融合,横向关联,纵向融通,这个数据和各个高校是实时融通的,为省教育厅领导和职能部处提供了领导仪表盘、各职能处室的专项服务、81张高基表及年报年鉴表格的自动生成、绩效分析、招生就业及办学指标计算、教育评估等功能,从根本上解决了数据碎片化及其治理问题

其次,面向全省高校辅助决策,为高校领导以及校内各个职能部处提供了系列功能,包括办学情况综合分析和在线查询,专业结构分析比较,校级的教学质量监控评测体系,教师管理等等,这些功能非常实用,这是大学实现精细化、规范化、现代化管理的必备基础。以我校为例,我们过去教师的数据可能在人事处、教务处、科研院等学校的职能部门,采取本平台以后,把教师有关的所有数据都进行了融合,打通了所有原来割裂的数据。从去年开始,我们学校的职称评聘,年度考核全部基于这一平台,全部在大数据里,建立健全了基于数据驱动的精准化服务,解决了数据碎片化历史遗留问题,实现了从管理信息化向服务信息化的根本转变

第三,为本科教育教学评估及专业认证提供技术支撑。鉴于本平台能提供比较全面的高校办学状态数据,便于专家在进校之前全面系统地掌握学校办学的情况,找到问题,精准查看验证,提高效率,给高等教育评估提供了重要支持。基于本平台,

大数运算心得体会报告 大数运算心得体会报告怎么写(六篇)

心中有不少心得体会时,不如来好好地做个总结,写一篇心得体会,如此可以一直更新迭代自己的想法。那么你...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?