电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

数学天才读书心得体会报告 这才是数学读书心得(五篇)

来源:互联网作者:editor2024-02-011

心得体会是指一种读书、实践后所写的感受性文字。那么我们写心得体会要注意的内容有什么呢?下面是小编帮大家整理的优秀心得体会范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

2022数学天才读书心得体会报告一

1、联系学生的生活实际,在教学中,我创设了“拿粉笔”、“比一比”、“画一画”等多个情境,激发了学生提出问题,解决问题的欲望,使学生感受分数对应的整体“1”不同,分数所表示的部分的大小或具体数量也就不一样,让学生在具体的情境中感受、理解数学问题。

2、注重引导学生在生活中自己发现问题、自己讨论解决问题。如在“拿粉笔”的活动中,我引导学生仔细观察,并提出问题,然后再组织学生讨论解决,让学生在民主、和谐的氛围中充分合作开拓思维,提高了学生的合作探究的能力。

本节课,大多数的学生能提出问题,积极主动地参加讨论问题,争先恐后地抢答问题。然而也有一些问题是值得我继续思考的:分数的再认识,再认识的内容有两点: 1、在具体的情境中,进一步理解分数的意义。2、结合具体的情境,体会“整体”与“部分”的关系。

思考一:这里的“进一步”、“体会”两词就属于模糊词语,对于老师而言,比较难以把握,到底“进到哪一步”?“体会到哪一层”?

思考二:我们如何对学生进行评价:他是否进到那一步了,是否真正体会到了。评价标准是什么?仅仅是那几道题?教学过程中,拿粉笔环节进行的很顺畅,几乎异口同声说出“因为总枝数不同,它们的1/2当然不同”。是不是这样就算是体会了呢?特别在上了第二课时带分数、假分数后我发现有大部分学生其实并没有真正体会部分与整体的关系。记得在上第二课时要求把三张饼平均分给四个人时,大部分学生按课本上的分法说出两种不同的分法。但这时彭威同学站起来说: 三张饼,每张平均分成四份,就一共分成了十二份,每一个人就吃了其中的十二分之三,大家一听,觉得他说的也有道理。之前,大家的分法是:三张饼,每张平均分成四份,每个人都吃了一张饼的四分之一,一共吃了三个四分之一,也就是四分之三。显然,彭威的分数与之前大家的分数是不一样的,那究竟为何会出现这样不同的两个分数呢?其实,出现这样的局面,是因为这两个分数的总体,也就是单位一是不同的,一个是把一张饼看成整体,一个是把三张饼看成整体。虽然我知道这其中的原因,可学生们知道吗?思考后我知道,其实学生出现这样的情况是有原因的。因为在前一课时《分数的再认识》中,学生知道了两个不同的总体,即使它们取相同的几分之几,结果也是不同的。正是学生有这样的已有经验,才会出现分出的饼有四分之三和十二分之三的两种不同结果。也正是学生有这样的经验,我开始让学生讨论:四分之三和十二分之三的总体分别是谁?开始学生有点不了解,渐渐地他们明白,四分之三表示每个人吃了一张饼的四分之三。而十二分之三表示每个人吃了三张饼的十二分之三(也就三张饼的四分之一)。

为这类问题我们数学组的老师还争论了两天。我总觉得我们很多老师教知识也不能前后连贯。教的是五年级的内容好像三年级学得做法就不能用了。很多老师居然还认为把三张饼平均分给四个人,每个人的得到的饼不能用十二分之三表示。可见分数的再认识难度多大,要真正理解谈何容易。并不是照本宣科做到书上几个题目就算掌握了。其实分数的再认识是第二课时学带分数假分数的铺垫。学生只有充分理解了部分与整体的关系后才会理解例如四分之九这些假分数,否则学生用三年级学的分数的知识来理解这些假分数是想不通的。才会理解整体看的不同,(即单位”1”不同)可能写出的分数就不同。

2022数学天才读书心得体会报告二

数学家的名言

1、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。数学是科学之王。

2、哪里有数,哪里就有美。---proclus3、数学是无穷的科学。——赫尔曼外尔

4、历史使人聪明,诗歌使人机智,数学使人精细,哲学使人深邃,道德使人严肃,逻辑与修辞使人善辩。---bacon,francis5、算术是人类知识最古老,也许是最最古老的一个分支;然而它的一些最深奥的秘密与其最平凡的真理是密切相连的。

6、也许听起来奇怪,数学的力量在于它规避了一切不必要的思考和它惊人地节省了脑力劳动。

7、没有那门学科能比数学更为清晰的阐明自然界的和谐性。---carus,paul8、数学是特别适于处理任何种类的抽象概念的工具,在这个领域中它的力量是没有限度的。由于这个原因,一本关于新兴物理的书,只要不是纯粹描述实验的,实质上就必然是数学书。

9、数学不是规律的发现者,因为他不是归纳。数学也不是理论的缔造者,因为他不是假说。但数学却是规律和理论的裁判和主宰者,因为规律和假说都要向数学表明自己的主张,然后等待数学的裁判。如果没有数学上的认可,则规律不能起作用,理论也不能解释。----peirce,benjamin10、笛卡儿的解析几何于牛顿的微积分已被扩张到罗巴切夫斯基、黎曼、高斯和塞尔维斯托的奇异的数学方法中(这种扩张比哲学史上所记载的任何一门学科的扩张更大胆)。事实上,数学不仅是各门学科所必不可少的工具,而且它从不顾及直观感觉的约束而自由地飞翔着。历史地看,数学还从没有象今天那样表现出对于纯粹推理地至高无上。---butlernicholas murray11、希尔伯特(t)强调说,’数学知识终究要依赖于某种类型的直觉洞察力。

12、数学沿着他自己的道路而无拘无束的前进着,这并不是因为他有什么不受法律约束之类的种种许可证,而是因为数学本来就具有一种由其本性所决定的并且与其存在相符合的自由。---hankel,hermann13、思维的经济原则在数学中得到了高度的发挥。数学是各门科学在高度发展中所达到的最高形式的一门科学,各门自然学科都频繁的求助于它。---mach,e14、数学是科学的大门钥匙,忽视数学必将伤害所有的知识,因为忽视数学的人是无法了解任何其他科学乃至世界上任何其他事物的。更为严重的是,忽视数学的人不能理解他自己这一疏忽,最终将导致无法寻求任何补救的措施。---bacon,roger15、数学是科学之王。——-高斯

16、几何、理论算术和代数,这些学科除了定义和公理之外,没有其他原则,除了演绎以外,没有其他证明过程但就在这一过程中,却已综合了简单性、复杂性、严密性和一般性,这一特性是不为其它学科所具有的。---whewell,w.17、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。

18、没有那门学科能比数学更为清晰的阐明自然界的和谐性。---carus,paul19、法国数学家彭加勒(poincare,)曾经说过‘逻辑是证明的工具,直觉是发明的工具。"逻辑可以告诉我们走这条路或那条路保证不遇见任何障碍,但是它不能告诉我们哪条道路能引导我们到达目的地。为此必须从远处了望目标,教导我们了望的本领的是直觉。没有直觉,数学家就会像这样一个作家,他只会按语法写诗,但是却毫无思想。

20、学习数学是为了探索宇宙的奥秘。如所知,星球与地层、热与电、变异与存在的规律,无不涉及数学真理。如果说语言反映和揭示了造物主的心声,那么数学就反映和揭示了造物主的智慧,并且反复地重复着事物如何变异为存在地故事。数学集中并引导我们地精力、自尊和愿望去认识真理,并由此而生活在上帝地大家庭中。正如文学诱导人们地情感与了解一样,数学则启发人们地想象与推理。---chancellor,w.e.21、在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。——康托尔

22、着名数学家华罗庚说:研究科学最宝贵的精神之一,是创造的精神,是独立开辟荒原的精神,科学之所以得有今日,多半是得利于这样的精神,在’山穷水尽疑无路‘的时候,卓越的科学家往往是另蹊境,创造出‘柳暗花明又一村’的境界。

23、数学知识对于我们来说,其价值不止是由于他是一种有力地工具,同时还在于数学自身地完美。在数学内部或外部地展开中,我们看到了最纯粹的逻辑思维活动,以及最高级地智能活力地美学体现。---pringsheim,alfred24、数学知识有三个不同于其它知识地主要特征:其一是数学知识比其它知识更清晰地使其结果具有真理性;其二是数学知识乃是获得其它正确知识地必经的第一步;其三是数学知识的获得并不依赖于其它知识。---schubert,h.25、数学家毫不顾及声明或猜想,他们仅仅根据定义和公理,并用论证和推理来演绎每一件事。事实上,现在把那些仅由猜想或假说建立起来的理论称之为科学事不正确的,因为猜想往往求助于某种见解或主张,因而他不能由此而产生知识。---reid,thomas26、对数学的酷爱,不仅在吾辈之中与日俱增,而且在军队中也是一样,对此已在上次战役中充分地体现出来了。蓬乃派托自己就有很好地数学素养,当然不能要求所有学过数学的人都能成为拉普拉斯和拉格朗日那样的几何学家,或者都成为蓬乃派托那样的英雄。但是,数学毕竟在他们的头脑中留下了痕迹。这就能使他们比未经过数学训练的人作出更多的贡献。---lalande27、一个国家的科学水平可以用它消耗的数学来度量。——拉奥

28、但是数学享有盛誉还有另一个原因:正是数学给了各种精密自然科学一定程度的可靠性,没有数学,它们不可能获得这样的可靠性。

2022数学天才读书心得体会报告三

一、基本情况分析

七年级两个班学生的总体情况如下: 1班学生:33人,其中男生18人,女生15人。2班学生42人,其中女生20人,男生21人;通过小学的升学成绩来看,学生的数学成绩参差不齐,分数高的,有90分以上的分数低的,还不过30分,总体上看,学生的数学成绩较差,在学生的数学知识上看,小学学过的四则混合运算,相应的较为简单的应用题,对图形、图形的面积、体积,数据的收集与整理上有了初步的认识,无论是代数的知识,图形的知识都有待于进一步系统化,理论化,这就是初中的内容,本学期将要学习有关代数的初步知识,对图形的进一步认识;在数学的思维上,学生正处于形象思维向逻辑抽象思维的转变期,这期间,结合教学,让学生适当思考部分有利于思维的题,无疑是对学生终身有用的;在学习习惯上,部分小学的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业,超前学习等,都应得到强化;通过前面几天的观察,大部分学生对数学是很感兴趣的,尽管成绩较差,但仍有部分学生对数学严重丧失信心,谈数学而色变,因此要给这部分学生树信心,鼓干劲;对于小学升入初中,学生有一个适应的过程,刚开始起点宜低,讲解宜慢,使学生迅速适应初中生活。

二、教材分析

走进数学世界:这部分内容是以通俗易懂的语言、丰富有趣的数学问题、著名数学家的生平史料等内容,让学生在极其轻松的氛围中,与数学交朋友,学会做一些简单的数学问题,使学生初步认识到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识,使学生对数学产生一定的兴趣,获得学好数学的自信心,产生继续学习的欲望。这部分内容在小学数学和中学数学的联系中起到承上启下的作用,这为学生以后初中数学各部分的内容作了一个有益的铺垫。

有理数:这部分的主要内容是有理数的概念及其加减法、乘除法、和乘方运算,并配合有理数的运算学习近似数和有效数字的基本知识,以及使用计算器作简单的有理数运算。

这部分内容在设计上是从实际问题情境与已有的小学数学知识基础着手,提出问题,引导学生自主地发现新的有理数的一些概念,探索有理数的数量关系及其规律。在方法上采用了由具体特殊的现象发现一般规律,使学生初步体验从实际问题抽象出数学模型的思想方法,初步学会表示数量关系的一些数学工具以及解决一些简单问题的方法。同时适当控制练习和习题的难度,引人计算器,避免不必要的烦琐的计算。

这部分的内容不仅是为下一部分内容“整式的加减”的学习作好一个铺垫,而且是整个初中(7~9年级)数学“数与代数”内容中关于“数”的学习的重要基础,通过这部分内容的学习,可以有助于学生更好地学习“数与代数”、“空间与图形”、“统计与概率”等内容,可以说这部分内容是整个初中数学学习的重要基础,因此这部分内容是本学期教学内容的一个重点。

整式的加减:这部分的主要内容是在学习有理数的基础上,引入字母表示有理数,实现由数到式的飞跃。继而介绍代数式、代数式的值、整式、单项式与多项式及其相关概念,以及多项式的升降幂排列,并在这些概念的基础上介绍同类项的概念、合并同类项的法则以及去括号与添括号的法则,最后将这些法则应用于整式的加减。采用了与第二部分内容相同的设计思想,即从实际问题着手,结合学生已有的生活经验与已有的知识基础,提出问题,引导学生用字母表示数,实现学生的思维由数到式的飞跃,并运用类比的思想探索数量关系及其规律,初步学会表示数量关系的代数工具并用于解决一些简单问题的方法。

这部分内容是整个初中数学“数与代数”内容中关于“代数”学习的重要基础,也是整个中学阶段“代数”内容的重要基础。掌握好这部分内容对于学生今后学习分式、方程与不等式、函数等有着极重要的作用,因此这部分内容是本学期教学内容的又一个重点。

图形的初步认识:这部分的主要内容是图形的初步认识,从学生生活周围熟悉的立体图形入手,使学生队物体形状的认识由模糊、感性的上升到抽象的数学图形,学会画简单的立体图形,通过立体图形的展开图介绍立体图形与平面图形的关系,从而引人组成立体图形和平面图形的最基本的图形——点和线的介绍,进而以此为基础介绍角、相交线、平行线的有关概念与性质以及平行线的识别方法,并介绍这些知识的一些初步应用。

这部分内容在设计上是以学生在小学所学的“空间与图形”知识为基础,通过大量丰富的立体、平面图形,直观感知、操作确认、实践活动,进一步丰富学生对立体图形和平面图形的认识与感受,探索图形中存在的简单关系,初步体验一些变换的思想,初步学会数学说理。在这部分的内容编排上,以体——面——线——点为序,从学生周围的、熟悉的各种物体入手,直观认识立体图形,然后通过视图与展开图,进一步加以认识,再转到对各种平面图形的认识,对基本图形——点和线的认识,最后认识角、相交线及平行线。让学生在观察中学会分析、在操作中体验变换。这部分内容也是本学期教学内容的又一个重点。

数据的收集与表示:这部分的主要内容包括三个部分:数据的收集、数据的表示、可能还是确定。前两部分是属于统计范畴的内容,后一部分属于概率范畴的内容,整个内容围绕着真实的数据展开教学。这部分内容在设计上是以大量丰富的实际生活例子为载体,让学生通过自主实践操作与合作探索活动学会数据的收集与表示的简单方法,并用来处理贴近学生生活的一些问题,养成用数据说话的习惯。这部分内容的引入是为适应社会发展的需要,让学生初步认识可以帮助人们对大量的数据作出合理的推断与预测的一种新的研究工具——统计与概率。

三、明确本期教学目标

本期教材知识内容为“走进数学世界”、“有理数”、“整式的加减”、“图形的初步认识”、“数据的收集与表示”。

1、知识与技能目标:学生通过经历从具体情境中抽象出符号的过程,认识有理数和代数式,掌握必要的有理数和代数式的运算(包括估算)技能,能运用有理数,代数式探索具体问题中的数量关系和变化规律,并能运用有理数的代数式来进行描述;学生在经历物体和图形的初步认识过程中,掌握基本的识图与作图技能,认识最基本的图形――点和线,进而认识角、相交线和平行线,掌握与此相关的基本推理技能;学生通过经历收集、整理、描述、分析数据,做出判断并进行交流活动的全过程,体会数据的作用,掌握基本的数据处理技能,形成对统计与概率的初步认识。

2、过程与方法(数学思考与解决问题)目标:①学会能对具体情境中较大的数字信息做出合理的解释和推断,能用有理数、代数式刻划事物间的相互关系。②学生通过在探索图形(点、线、角、相交线、平行线)的性质、图形的变换以及平面图形与窨几何体的相互转换(三视图、展开图)等到活动过程中,初步建立空间观念,发展几何直觉;能在说理的推证过程中,体会证明的必要性,发展初步的演绎推理能力。③学生能在数据的收集与表示中,学会收集、选择、处理数学信息,做出合理的推断或大胆的猜测,并能用实例进行检验,从而增加可信度或否定。④学会能结合生活实际的具体情境发现并提出数学问题。⑤学会从不同的角度解决问题的方法,有效地解决问题,尝试对比评价不同方法之间的差异,并学会对解决问题过程的反思,从而获得解决问题的经验。⑥学会在解决问题的过程中与他人合作学习,养成独立思考与合作交流的习惯。

3、情感与态度目标:①学生通过初步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,形成用数学的意识。②学会敢于面对数学活动中的困难,勇于运用所学数学知识克服困难并解决问题,获得成功的体验,从而树立学好数学的自信心。③学生通过学习,体验到数学中的有理数、代数式和几何图形是有效地描述现实世界的重要手段,认识到这些数学知识是解决实际问题和进行交流的重要工具从而了解数学对促进社会进步和发展人类理性精神的作用。④初步认识到数学活动是一个充满观察、实验、归纳、类比、推断可以获得数学猜想的探索过程,体验到数学活动充满着创造性,感受证明的必要性、证明过程的严谨性和结论的确定性。⑤学会在独立思考的基础上,积极参与学习讨论,敢于发表自己的观点,并能虚心听取、尊重与理解他人的见解,从而学会在交流中提高自己,形成良好的思维品质。⑥通过阅读学习,了解我国数学家在数学上的杰出贡献,从而增强民族的自豪感,增强爱国主义。

上述三维目标是一个密切联系的有机整体,它们是相互联系的和相互作用的。过程与方法目标的实现,情感与态度目标的实现,离不开知识与技能的学习,否则它们的实现将是无源之水、无本之木;同时,知识与技能的学习必须以有利于过程与方法目标、情感与态度目标的实现为前提。

四、具体措施

1、做好教学六认真工作。把教学六认真做为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真。

2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出相应的数学思考题,激发学生的兴趣。

3、开展丰富多彩的课外活动,课外调查,数学建模,野外测量,七巧板游戏,课件演示。使学生乐在其中,乐此不疲。

4、挖掘数学特长生,发展这部分学生的特长,使其冒尖。

5、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。

6、用哲理的高度,站在系统的高度,思如泉涌的精神状态,八方联系,浑然一体的学习方式,使学生学得松。成绩好,发展学生的素质。

五、时间安排

第一章:走近数学世界第一周

第二章:有理数第二―――六周

第三章:整式的加减第七―――九周

第九周四、五半期考试。

第四章:图形的初步认识第十――十四周

第五章:数据的收集与表示第十五-十七周

第十八周进行期末复习,迎接期末考试。

2022数学天才读书心得体会报告四

<>

落实教导处的精神和要求,认真组织有计划的、有效率的复习,使每一个学生能圆满完成小学阶段的数学学习任务,顺序升入高一级学校,充分做好迎接区毕业班教学质量调研和小学毕业升考试的准备。

<>

1、使学生比较系统地牢固地学会有关整数、小数、分数、简易方程等基础知识,具有进行整数、小数、分数四则运算的能力,会使用学过的简便算法,合理、灵活地进行计算,会解简易方程,养成检查和验算的习惯。

2、使学生巩固已获得的一些计算单位的大小的表象,牢固地学会所学的单位间的进率,能够比较熟练地进行名数的简单改写。

3、使学生牢固地学会所学的几何形体的特征,能够比较熟练地计算一些几何形体的周长、面积和体积,巩固所学的简单的画图、测量等技能。

4、使学生学会所学的统计知识,能够看和绘制简单的统计图表,并且能够计算求平均数问题,正确找出一组数据的中位数、众数,并进行分析。

5、使学生牢固地学会所学的一些常见的数量关系和应用题的解答方法,能够比较灵活地运用所学知识独立地解答不复杂的应用题,解决生活中一些简单的实际问题。

<>

1、 制订具体的复习计划。

对本班学生理解和学会数学基础知识的情况以及能力发展的情况进行全面的分析研究,找出学生学习中的缺陷、薄弱环节以及存在的其它问题,结合本单元各个复习板块的教材编排情况,拟定具体的复习顺序、重点、课时分配及适当的配套练习。

2、 重视基础知识的复习,注意知识间的联系。

重视学生对概念、法则、性质的理解和学会,沟通知识间的联系,使学生对已有知识系统,弄清它们之间的联系,避免混淆。

3、 注意继续培养学生的能力。

在计算方面,要注意提高每一个学生的计算能力;在几何知识方面,要进一步发展学生的空间观念;在复习应用题时,要注意提高学生分析问题的能力和解决简单的实际问题的能力。

4、 注意启发、引导学生主动地进行整理和复习。

讲究复习技巧,有效调动学生复习的积极性和主动性,课堂上要让学生多说、多练习,互相促进,切实提高复习的效果。

5、 注意因材施教,加强培优补差。

复习要面向全体学生。对学有余力的学生要让他们通过复习得到进一步的提升;对知识学会比较薄弱的学生要区别对待,在课堂上还学会不牢固的内容,要利用课后时间补差,帮助他们学会好最基本的知识和形成最基本的技能。

2022数学天才读书心得体会报告五

为了更有序高效地进行期末复习,特制定该计划

一、复习原则

1. 基础性原则

钻研课标,掌握课标要求,低起点复习。回归课本,立足基础知识的掌握,基本技能的形成,基本数学思想方法的渗透。面向所有学生,让所有人都有所收获和提高。

2. 框架性原则

梳理知识,扫除盲点,帮助学生形成知识网络,使学生对所学知识有一个整体认识和提升。

3. 规范性原则

强调例题的示范作用,通过例题引导学生规范地进行思考和规范地进行书写。要让学生对几何证明由“有感觉”过度到“有把握”,解题由“会做”到“做对”。

4. 先学后教原则:先学后教,以学定教。学生会的不教,教了还不会的不教。

二、时间安排

12月21日 第一章复习

12月24日 第二章复习

12月26日 第三章复习

12月28日 第四章复习

1月4日 第四章

1月7日 第五章复习

1月8日 第六章

1月10日 第七章

1月14日 第八章

1月15--21日 练习

三、学案格式

1. 课前训练:4至6条小题目,用以检查学生对所学知识掌握情况,让学生自主回顾本节知识,以学定教。

2. 知识梳理:根据课前训练对所学知识进行整理,形成知识体系。但必须以题目为载体,不能“空对空”。

3. 典型例题:精心选择3至5道例题,用来突破重点,分解难点,起到示范作用,引领学生学会规范分析,规范书写。

4. 课堂练习:保持20分钟作业量,进行及时巩固。可以作为午间作业。

数学天才读书心得体会报告 这才是数学读书心得(五篇)

心得体会是指一种读书、实践后所写的感受性文字。那么我们写心得体会要注意的内容有什么呢?下面是小编帮...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?