电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

反比例函数实际应用教学设计简短 反比例函数实际应用教案(6篇)

来源:互联网作者:editor2024-02-052

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

推荐反比例函数实际应用教学设计简短一

1、联系生活,从生活中引入。数学来源于生活,又服务于生活。新的《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学的过程”。关注学生已有的生活经验和兴趣,通过现实生活中的素材引入新课,使抽象的数学知识具有丰富的现实背景,为学生的数学学习提供了生动活泼、主动的材料与环境。例1表格中的数量与单价是学生所熟悉的,贴近了学生的生活,故很快将学生带入轻松愉快的学习环境,创设了良好的教学情境,学生及时进入状态,手脑并用,课堂气氛十分活跃。让学生从生活中学习数学,让学生感觉到数学就在我们身边,从而对数学产生亲切感。

2、在观察中思考。小学生学习数学是一个思考的过程,“思考”是学生学习数学认知过程的本质特点,是数学的本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程。例如:在教学例题时,出示了小红买彩带是营业员阿姨所出示的数量与总价的表格,先观察这两个表格,然后根让学生据学习菜单思考的问题。

思考题中“更有”两个字对学生的思维有一定定向作用,让学生着重去寻找表1中的规律。在学生深入观察、独立思考、合作交流后,必会发现表1中的两个量变化的规律。另外,由于事例熟悉,且数据计算起来很简单,便于学生口算,学生学习时能将更多的时间和精力用于思考这两种量的变化规律上,进而便于提示正比例的意义。

3、在合作中感悟。新的数学课程标准提倡:引导学生以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体”的思想,放手让学生先独立思考,后采取小组合作的方式学习,让学生在小组里进行合作探究,最后小组汇报学习结果。这样,就做到了:学生自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而归纳出正比例的意义,并学会运用正比例的意义正确判断两种量是否成正比例关系。

4、在知识的系统中学习。知识与知识之间是相互联系的,相互联系的知识就形成知识系统。如果学生能在知识的系统中学习,在知识的对比中学习,在学习中体会知识的联系和区别,那么学生就会对所学知识有更深刻的'认识,更利于学生建立、完善科学的认知结构。如,教材中设计的练习中有判断正方形的面积与边长是不是正比例关系的问题。

我在教学中就添加了判断正方形的周长与边长是不是正比例关系的问题,并与判断正方形的面积与边长是不是正比例关系的问题一同出示,让学生在对比中学习,学习的思维就会更为深刻,知识的系统性就会更强。由于本节课概念性教学,因此教学后学生还不能非常清楚地表达自己的思维,这与课堂上让学生说的不够充分有关。因此,课下要求学生重视对新学概念的理解与识记。

推荐反比例函数实际应用教学设计简短二

教学目标:

1、理解反比例的意义。

2、能根据反比例的意义,正确判断两种量是否成反比例。

3、培养学生的抽象概括能力和判断推理能力。

教学重点:

引导学生理解反比例的意义。

教学难点:

利用反比例的意义,正确判断两种量是否成反比例。

教学过程:

一、复习铺垫

1、成正比例的量有什么特征?

2、下表中的两种量是不是成正比例?为什么?

二、自主探究

(一)教学例1

1、出示例1,提出观察思考要求:

从表中你发现了什么?这个表同复习的表相比,有什么不同?

(1)表中的两种量是每小时加工的数量和所需的加工时间。

教师板书:每小时加工数和加工时间

(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。

教师追问:这是两种相关联的量吗?为什么?

(3)每两个相对应的数的乘积都是600.

2、这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?

教师板书:零件总数

每小时加工数×加工时间=零件总数

3、小结

通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间 等于零件总数,这里的零件总数是一定的。

(二)教学例2

1、出示例2,根据题意,学生口述填表。

2、教师提问:

(1)表中有哪两种量?是相关联的量吗?

教师板书:每本张数和装订本数

(2)装订的本数是怎样随着每本的张数变化的?

(3)表中的两种量有什么变化规律?

(三)比较例1和例2,概括反比例的意义。

1、请你比较例1和例2,它们有什么相同点?

(1)都有两种相关联的量。

(2)都是一种量变化,另一种量也随着变化。

(3)都是两种量中相对应的两个数的积一定。

2、教师小结

像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。

3、如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?

教师板书: xy =k(一定)

三、课堂小结

1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。

2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?

四、课堂练习

完成教材43页做一做

五、课后作业

练习七6、7、8、9题。

六、板书设计

成反比例的量 xy=k(一定)

每小时加工数×加工时间=零件总数(一定)

每本页数×装订本数=纸的总页数(一定)

推荐反比例函数实际应用教学设计简短三

教学内容:教材14~16页例4、例5、例6,24页做一做,练习三4、5、6、7题。

素质教育目标

(一)知识教学点

1.理解反比例的意义。

2.能根据反比例的意义,正确判断两种量是否成反比例。

(二)能力训练点

1.培养学生的抽象概括能力。

2.培养学生的判断推理能力。

(三)德育渗透点

通过反比例意义的教学,使学生受到辩证唯物主义观点的启蒙教育。

教具学具准备:投影仪、投影片。

教学重点:引导学生总结概括出成反比例的量,是相关联的两种量中相对应的两个数的积一定,进而抽象、概括出成反比例关系式:x×y=k(一定)

教学难点:利用反比例的意义,正确判断两种量是否成反比例。

教学步骤

一、铺垫孕伏

1.下表中的两种量是不是成正比例?为什么?

2.回忆:成正比例的量有什么特征?

二、探究新知

1.引入新课。我们已经学习了常见数量关系中成正比例关系的量的特征。这节课我们继续研究常见的数量关系中的另外一种特征——成反比例的量。(板书:成反比例的量)

2.教学例4

(1)出示例4,提出观察思考要求:(投影出示)

从表中你发现了什么?这个表同复习的表相比,有什么不同?

(2)学

反比例函数实际应用教学设计简短 反比例函数实际应用教案(6篇)

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?