电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

下学期 4.11 已知三角函数值求角

2024-05-262

下学期 4.11 已知三角函数值求角(精选2篇)

下学期 4.11 已知三角函数值求角 篇1

  (第二课时)

  一.教学目标 

  1.掌握已知一角的正切值,求角的方法.

  2.掌握给定区间内,用反三角函数表示一个角的方法.

  二.教学具准备

  投影仪

  三.教学过程 

  1.设置情境

  师:请同学们看投影,回答问题

  (1)若 , ,则 .

  (2)若 , 则 .

  生:(1) 或 .

  (2) 或 .

  师:回答正确.请同学结合上面两个小题的求解过程,总结一下已知三角函数值求角的一般步骤:

  生:从上面两个小题的求解过程看,有三个步骤:

  第一步,决定角 可能是第几象限角.

  第二步,如果函数值为正数,则先求出对应的锐角 ;如果函数值为负数,则先求了与其绝对值对应的锐角 ;

  第三步,如果函数值为负数,则根据角 可能是第几象限角,得出 内对应的角—如果它是第二象限角,那么可表示为 ,如果它是第三或第四象限角,那么可表示为 或 .

  师:总结得很好,本节课我们继续学习用反正切表示角的方法,先请同学看问题(投影仪):

  2.探索研究(此部分可由学生仿照正弦、余弦分析解决)

  【例1】(1)已知 ,且 ,求 (精确到 ).

  (2)已知 ,且 ,求 的取值集合.

  解:(1)由正切函数在开区间 上是增函数和 可知,符合条件的角有且只有一个,利用计算器可得 (或 ).

  (2)由正切函数的周期性,可知 时, ,所以所求的 的集合是 .

  下面讨论反正切概念,请看 图形(图1)(投影仪):

  观察正切函数的图像的性质,为了使符合条件 ( 为任意实数)的角 有且只有一个,我们选择开区间 作基本的范围,在这个开区间内,符合条件 ( 为任意实数)的角 ,叫做实数 反正切,记作 ,即 ,其中 ,且 ,那么,此例第(2)小题的答案可以写成 .

  表示的意义: 表示一个角,角的特点是①角的正切值为x,因此角的大小受x的限制;②并不是所有满足 的角都可以,只能是 范围内满足 的角;③由于x为角的正切值,所以x的值可为全体实数.

  【例2】(1)已知 ,且 ,求 .

  (2)已知 ,且 ,求 的取值集合.

  解:(1)因为 ,所以 .由正切函数在开区间 上是增函数可知符合条件的角有且只有一个,所以 .

  (2)由正切函数的周期性,可知当 时, .

  ∴所求 的取值集合是 .

  参考例题(供层次高的学生使用):

  1.求值 .

  解:根据诱导公式 ,且 ,

  ∴ .

  评法:由于反正弦 表示 内的一个角,而 ,所以应先用诱导公式将其转化为区间 内的角,再进行计算.

  2.求 的值.

  解:∵ 、 表示 中的角

  ∴令 ,则 ,

  ,

下学期 4.11 已知三角函数值求角

下学期 4.11 已知三角函数值求角(精选2篇)下学期 4.11 已知三角函数值求角 篇1  (第二课时)  一.教学目标   1.掌握已知一角...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?