《解决问题的策略》教学实录
《解决问题的策略》教学实录(通用16篇)
《解决问题的策略》教学实录 篇1
主讲:郝学兵 (宁夏回族自治区青铜峡市陈袁滩杨滩小学)
评析:田淑珍 (宁夏回族自治区青铜峡市教研员)
候建军 (宁夏回族自治区青铜峡市陈袁滩小学教研员)
设计理念 :
《数学课程标准》中指出:数学是数学活动的教学,应该充满挑战与探索,创造与成功。在本课教学中主要倡导自主探究的学习方式,不仅可以使学生真正理解和掌握基本的数学知识和数学方法,获得广泛的数学活动经验,更有利于在关注学习过程的同时,帮助学生获得成功的体验,树立自信心,增强上进心。在教学中努力构建“构建模型(学会制表)→利用模型(学会看表)→拓展模型(学会用表)”的教学模式旨在引导学生主动、充分参与,积极思考。激活学生的思维,使学生的思维沿着“旧知识的固定点——新知识的链接点——新知识的生长点”有序展开,不断迸发创新的火花,培养学生自主学习的品质,追求创新的人格,促进学生富有个性地学习,享受学习的乐趣,用智慧积木搭建“数学乐园”!
教学内容 : 苏教版四年级数学上册P65—67
教学要求 :
1、使学生在解决简单实际问题的过程中,初步体会用列表的方法整理相关信息的作用。
2、使学生会用列表的方法整理简单实际问题所提供的信息,会通过列表的过程分析数量关系,寻找解决问题的有效方法。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的自信心。
教学重点 :会通过列表的过程分析数量关系,寻找解决问题的有效方法。
教学难点 :体会用列表的方法整理相关信息的作用
教学过程 :
一、营造氛围、感受并体验“策略”,生成模型
1、创设情景,体验策略
国庆节的时候,小我们班的三位同学小华、小明、小军,三位小朋友去文具店,购买打折学习用品(出示课件图片)
师:在这幅图上,你能了解到哪些信息?
生:知道的条件(小明买了3本笔记本用去18元,小华买了5本笔记本)
师:板书
小明 3本 18元
小华 5本
师:知道了这些信息能你能提出什么样的数学问题呢?
生1:小华用去多少元?
生2:小明买1支笔记本多少元?
生3:小明和小华一共用去多少元?
生4:小华比小明多用多少元?)
┄┄┄┄┄
[ 评析 :通过学生的认真的观察并通过学生的思维分析,使学生能够提出问题,并解决问题,以次来增强学生的问题意识。]
师:我们就来解决“小华用去多少元?”这个问题,你能解决这个问题吗?并板书
小明 3本 18元
小华 5本 ?元
生:用18÷3=6元算出一本的价格,再用5x6=30元就可以算出5本的价钱了。
师:现在我们要解决“小华用去多少元”这个问题,但是,有些同学的思路不怎么清晰,你能用我们先找出已知条件和问题,先用其他方法进行整理吗?
生;(通过课前学生预习交流的方法)可能提出不同的想法,按不同人物将信息进行整理。
反馈学生的整理方法。(注意选择简洁一些的方法)
生1:小明 □□□ 18元
小华 □□□□□ ?元
生2:小明:3本 18元
小华:5本 ?元
生3:画线段图(板书略)
师:肯定(这是我们以前学过的方法),并给大家介绍另一种整理信息的方法(策略)——列表整理
板书:
小明
3本
18元
小华
5本
?元
[ 评析 :教师注意强调的是在板书时先画竖线表示一一对应,在画横线表示相互对应。以次来解决本节课的难点学生知道如何列表,如何填表,也就是体验这种“策略”]
强调:我们把小明的信息在第一行,让人一看就知道小明买了3本笔记本,花了18元;在第二行中,我们填上小华的信息,买了5本笔记本,花了多少元不知道,所以用“?”表示。(相互对应)
师:追问你觉得列表整理信息(这种策略)有什么好处?
生1:清楚、简洁
生2:使人一目了然,就可以看出数量之间的关系,很容易就能解答问题。
生3: ┄┄┄┄┄
[ 评析 :观察表格感知,用列表的方法整理信息,教师在教学的重点之一是让学生学会收集题目中的条件和问题,并按一定的结构填写在表格里。在教学中,教师要注意发挥自己的引导作用,在学生初步设想整理信息方法的基础上,知道学生将题目中的信息对应地填写在表格里。]
2、利用表格,解决问题,分析数量关系
师:你能由表格中的数量列式解决这个问题吗?重点让学生说说是怎么想的?每一步求的是什么问题。
生:
小明
3本
18元
小华
5本
?元
18÷3=6元(表示单价)
5x6=30元(小华的总价)
在交流结果的过程中,要引导学生感受从条件想起和从问题想起两种不同的解题思路。
[ 评析 :学生明确了为什么列表,但列表的好处不能仅仅停留在简单地感觉“清晰、简洁”上,还要让学生利用表格,学会分析数量关系,感受解题思路。这里的设计要让学生能进一步体会列表是合理而有必要的]
3、运用列表整理,解决第二个问题。
①接着“小军用42元买笔记本,能买多少本?”要求这个问题需要哪些信息呢?你能列表整理吗?
②师:自己会表格并注意表格应注意什么
生:(先画竖线表示一一对应,在画横线表示相互对应)。
③要解决这个问题,可以怎样想?
生:互动在小组里交流一下,说一说如何从条件和问题想的?
班级交流,并展示学生整理的表格强调方法,对学生汇的好的表格给予肯定,列式解答。
生1:展示自己的劳动成果。
生2:评价理解解答的过程。
生3:评价学生的书写,并检验。
生4:┄┄┄┄┄
[ 评析 :用足教材要求教师能揭示“知识背后的知识”,尽可能地突出学习才能的数学内涵,此处让学生回顾解决问题的过程,加深对数量关系的完整认识,清晰体会分析实际问题的基本策略,积累解决问题的经验,发展学生的思考能力。]
三、巩固拓展,应用提高
1、接着,他们走到一个放着字典的桌子旁边。(出示课件)
师:看过图后,你从图中得到了哪些信息?利用获得的信息来自己列表整理,并同桌讨论交流:说说你是怎样列表的,都注意到了哪些?并说说你是怎样解决问题的?每步算式求出的是什么?(学生活动)
生:展示自己绘制的表格和大家共同分享自己的劳动成果,并汇报要解决这两个问题,都要先求什么?(先求一本字典的高度)再求什么?
2、接着,他们走到文体专柜前小华拿出一些钱问售货员:“我这些钱能买几个球?”,小军问“一个排球多少元?”小明问:“可以买几个篮球?”
师:从书中这幅图中你又了解到了哪些信息呢?
你觉得这道题中的哪一句话最重要?
生:我带的钱正好可以买6个足球或8个排球。
师:请同学们根据题目的条件和问题在小组内完成列表整理,并根据表格的数量之间的关系进行解答问题。
生:师生互动,小组合作。
生:汇报交流
购买足球、篮球、排球情况统计表2007年10月25日
名称
单价
数量
足球
每个56元
6个
排球
每个 ?元
8个
篮球
每个48元
?个
[ 评析 :教师将完整的统计表的形式展示给学生,使学生初步感知统计表都有哪些组成,为后面的统计表学习打下坚实的基础。]
交流时,说说是怎样想的,每一步求的是什么问题?集体纠正。
3、学以致用、运用“策略”
师:通过大家自己能把三个相同数量绘在一个表格中,那么我们来吧小军、小华、小明、绘在一个表格中。
生:师生互动回顾刚才解决小明、小华和小明小军两题的解题过程,用表格整理条件和问题,你体会到什么?
师:你能把上面的两个表格合并起来吗?
生:同桌合作完成,并且展示。(板书略)
师:如果把方框去掉,再加上箭头,你还会填吗?
生出示: 3本 → 18元
5本 →( )元
( )本 → 42元
观察:师:从左往右看,你发现了什么?
生:本数与钱数对应,但每本价钱不变
师:从上往下看,你又发现了什么?
生:本数增加,付的钱数也增加
4、比较列表解决问题与例题的异同。
生1:表格中不仅可以填写条件与问题,
生2:可以全部填写条件。
[ 评析 :练习巩固一教材为基础,同时适当补充学生身边的问题,着力引导学生在解决实际问题的过程中巩固列表的策略。通过练习使学生体会:不管具体的问题情境怎样变化,列表的方法都是必要的,从而加深理解“列表”是我们数学中常见的策略,灌输了数学思想。]
四、全课总结
1、这三个同学在文化用品店的问题大家给解决了,他们知道后肯定很高兴,非常感谢大家!
2、同学们,今天我们学习了解决问题的策略,那你有哪些收获呢?
其实,解决问题的策略还有很多很多,我们今天只是初步学习了列表的方法和一些具体的策略。我相信同学们只要肯动脑筋、注意观察、注意思考,大家一定会提出更多更妙的策略!
本节课反思: 这部分教学内容是用列表的策略收集、整理信息并解决问题的。学生有这样的知识储备但是由于知识还没有形成,有的学生对以上的一些知识产生了一些兴趣,教师要打通学生的已有知识的关联,使学生能够运用自己的知识技能来学习新的本领。
新课标指出:教师不应只做教材忠实的实施者,而应该做对教材的开发者和建设者。新教材为学生提供了广阔的空间,也为教师的教学提供了丰富的资源。在教学中,要以学生的发展为本,充分挖掘教材中能实现教材价值的潜在因素,用活、活用教材。所以我将教材P65页例题采用了小明、小华、小军3人到商店购买学习用品全过程活动为主线这个现实情境呈现信息,在此基础上呈现问题,并解决第一个问题“小华用去多少元?”由于学生已有熟练地解答两步计算实际问题的知识经验,对于这个问题很难使学生产生整理的需求,因此教学时,我对例题增添了一个条件:“小明带了50元”一起呈现,从而学生感受到条件较多,信息比较复杂。这时,教师引导:“看来要解决问题我们先得对这些信息进行整理。找找看,哪些是解决问题有用的信息?”接着引导学生进行列表整理,并解答。使学生在矛盾冲突中,使他们产生了探究解决问题的策略的强烈欲望中,产生了寻找解题策略的需要,培养了策略意识。又提供了在其他柜台上的三摞字典的情境信息和问题:第一摞字典6本高168毫米,第二摞由15本这样的字典摞在一起高多少毫米,第三摞高504毫米,有多少本字典?同时还提供一张表格。由于第一摞有6本题中没有直接告知,是要学生通过数一数从情景图上获知,而第三摞的本数也清晰可数。这就干扰了学生的解题思路违背了教材的意图。因此,教学中我将第二三摞字典藏起来,只露一个角,这样,使这一习题转化为适应学生学习,有利于学生发展的练习内容,使学生不但学会运用策略解决数学问题,更在解决问题过程中又一次增强策略意识,获得成功学习体验。
本节课总评: 应用题的教学,对我们老师来说是一个难点,而这节课的确能上的很新,很扎实。
1、老师一上课,给我的感受是富有激情,语言精炼,抑扬顿挫,充分调动了学生的积极性。
2、这节课充分体现了以“学生为主体,教师为主导”的师生关系。教师在解决第一个问题时,起了一个“抛砖引玉”的作用。这一部分处理突出了一个“巧”字。在认识列表整理的时候老师引导学生先将情景图中的信息进行了文字整理,并板书到了黑板上,又将板书列成表格,顺理成章列出了表格,便于学生理解,这一点处理的很好。教师在将例一的两个表格合成一个表格时,也很巧妙,他打破了常规教学,把一道例题完全讲完,再进行巩固练习,而这节课他是认识例表整理后进行巩固练习,在返回到例题让学生独立去合并表格。
3、教师能抓住本节课的重难点,教给了学生怎样列表——看表——用表,也培养了学生分析应用题的能力。他能创造性使用教材,不拘泥于教材。抓住了教学重点,过渡自然始终以到商店购买文具为主线展开练习。教师很善于表扬学生,评价语言丰富多样,学生乐于接受,正因为这样学生非常乐于回答问题,很多学生跃跃欲试,看到学生学的这么有趣。我感到惭愧,我在课堂上很少使用评价语。
4、在解答应用题时,分析数量关系很重要,这节课教师在分析解题思路时,能抓住单价、数量、总价这一关系式。还教给学生分析应用题的两种方法,从以知条件入手,和以解决问题入手。课堂上,知识的衔接环环相扣,自然流畅,没有脱离的现象,我想这就是老师的策略。给我的感觉是学生积极参与的面很宽,学生的积极性很高。在佩服这位教师的教学策略的同时,我在思考着一个问题:怎样才能让学生自愿去参与学习?去深入思考?
总之这节课上的很成功,在这一部分的教学给我们起了一个引领作用.
《解决问题的策略》教学实录 篇2
学习内容:65页例3及相关练习。
学习目标:
1. 进一步熟悉用列举法的策略解决问题,并且做到不遗漏、不重复。
2. 掌握按照一定的顺序进行列举的策略,积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,获得学好数学的信心。
3. 进一步发展学生的思维,培养思维的严密性和条理性。
学习重点:进一步熟悉用列举法的策略解决问题,并且做到不遗漏、不重复。
学习难点:掌握按照一定的顺序进行列举的策略,积累解决问题的经验,增强解决问题的策略意识。
【课前导学】
一、 学习例3。
⑴读题,理解题意。着重理解每个房间“不留空位”是什么意思。
⑵怎样想才能不遗漏、又不重复?
⑶引导学生用列表的方法,从只住一间3人房想起。
3人间
2人间
⑷如果从只住一间2人间想起,会吗?列表想一想。结果怎样?
2人间
3人间
⑸哪种方法更容易得出结论?为什么?
二、 尝试达标:
1、 有23人到旅馆住宿,住3人间和2人间(每个房间不能有空床位),有多少
种不同的安排?
2、 学校组织348个同学去春游,准备租48座和36座的汽车,在不允许有空位
的情况下,应当怎样租车?
【课内导学】
一、成果展示。
1、组内交流预习情况,再在组内进行相互评价,组长统计学习结果,并搜集自学过程中遇到的问题。
2、全班展示(每组在黑板上展示一道)
二、合作交流
1、探索预习过程中所遇到的问题。
2、老师预设问题:
今天学习解决问题的方法和上节课所学内容有何异同?
这部分解决问题在列举时最好先从何处入手?
三、精讲提升
1、学生交流探索结果,并鼓励学生装质疑争论。让思维得到碰撞。
2、老师巡视、适时指导。
3、交流学习心得。
补充解决问题方法:1、在一一列举的时候,为避免遗漏或重复,可以按照一定的顺序进行思考。 2、列举时的技巧是先考虑数字较大的(放在第一行)。列举时要注意有序列举。
四、达标检测:
1、完成练一练。指名说说自己是怎么想的。
2、学生独立完成66页第4题,66页第6题,67页第7题。指名交流。
3、完成课间作业。
【课后导学】
一、填空题
1、工程队要铺设78米长的地下排水管道,仓库中有3米和5米长的两种管子。可以有( )种不同的取法。
2、36可以写成哪两个素数的和?在括号里填一填。
36=( )+( )=( )+( )=( )+( )=( )+( )
3、甲、乙、丙、丁和小强进行围棋比赛,每两个人之间都比一盘,甲已经比了4盘,乙比了3盘,丙比了1盘,丁比了2盘,小强比了( )盘,还要比( )盘才能结束。
二、解决实际问题
1、有19人到旅馆住宿,住3人间和2人间(每个房间不能有空床位),有多少种不同的安排?
2、营业员要把42个球装在盒子里,一种盒子可以装4个,另一种盒子可以装6个,如果每个盒子都要装满,有多少种不同的装法?
3、五(1)班的张老师带42名同学去公园划船,每条大船限坐4人,每条小船限坐3人。
(1)如果每条船都不能有空位,有多少条不同的租法?(列表说明)
(2)租一条小船5元,租一条大船6元,怎样租船花的钱最少?要多少钱?
一列火车从上海到扬州,中途要经过4个站,这列火车要准备( )种不同的车票。
《解决问题的策略》教学实录 篇3
生活里的事情从发生到结束总是有过程的,事情发生的过程或是在数量的多少上发生变化,或是在方向、路线、时间等方面发生变化,或是在其他方面发生变化。研究这些事情里的数学问题经常有两条线索: 一条是从事情的起始状态,根据将要发生的变化,推断结束时的状态;另一条是从事情的结束状态,联系已经发生的变化,追溯起始状态。学生比较习惯用前一条线索分析数量关系和解决实际问题,但是,有些问题用后一种思路去解决是比较方便的。本单元教学逆推策略,通俗地讲就是“倒过去想”,即从事情的结果倒过去想它在开始的时候是怎样的。
1 在简单的事情中初步体会逆推是一种策略。
例1用图画呈现了甲、乙两杯果汁共400毫升,甲杯倒入乙杯40毫升,两杯里的果汁同样多。这是一件事情的开始、变化、结果三个时段的主要状况。甲杯里的部分果汁倒入乙杯后,两杯果汁才同样多,如果把甲杯倒入乙杯的那些果汁仍然倒回甲杯,就恢复了两杯果汁的原状。这是人们的经验,也是学生能够想到的办法,教材用图画展示了这样的思考和问题的答案。
这道例题的教学重点在体验“逆推”是解决问题的策略。为此,还安排了两项活动。一是在表格里先填写甲杯和乙杯现在各有果汁200毫升,再填写它们原来有多少毫升果汁,通过填表反思“倒回去”的过程。利用加法或减法计算倒入和倒出的问题,能进一步理解“倒回去”的意思,体会它对解决问题的作用。二是组织学生说说解决这个问题的策略,先回顾例题是怎样的实际问题,它是怎样解决的;再交流解决问题的方法有什么特点,以及对这种方法的感受。这样,就从解决问题的过程中提炼了思想方法。
2 举一反三,运用逆推策略解决实际问题。
例2中小明的邮票经过两次变化最后还剩52张,问题是他原来有多少张邮票。学生会感到,这题的事情虽然和例1不同,但都要从现在的数量追溯原来的数量。教材通过“你准备用什么策略解决这个问题”引导学生“倒过去想”,即如果跟小华要回30张邮票,那么小明就有52+30=82(张);如果不收集24张邮票,那么小明只有82-24=58(张)。“倒过去想”需要整理事情从开始到结束的变化过程,排出各次变化的次序。还要联系生活经验,思考“倒过去”的方法。如送出的应要回,收集的应去掉。在倒过去想的时候,还要逆着事情变化的顺序进行,先把后发生的变化倒回去,再把先发生的变化倒回去,直至事情的原来情况。这些都落实在说说自己的想法和列式解答之中。教材给出的第二种方法没有完全按照事情发生变化的次序一步步地逆推,而是先分析事情发展过程中的两次变化对小明邮票张数造成的总的影响。由于今年收集的邮票比送给小军的邮票少6张,所以现在的邮票应该比原来少6张。然后逆推: 如果现在的邮票再多6张,就是原来邮票的张数。教学时要提倡第一种方法,因为这种方法比较清楚地体现了逆推的策略,思考和操作比较顺畅,适宜多数学生应用。根据求出的答案,顺推过去,看看剩下的是52张吗?一方面能检验答案是否正确,另一方面是让学生再次体验事情的变化是有次序的。顺着变化一步一步地推,是从开始推向结果;逆着变化一步一步地推,是从结果推向起始。无论顺推还是逆推,有条理的思考是十分重要的。
本单元的例题只是提出现实的情境或问题、引发解题思路,让学生自己列式计算,在解题活动中体验方法,并在练习十六里主动运用逆推策略。练习十六的习题有四个特点: 一是题材宽广。有些联系学生生活中的收集画片、折纸鹤、买东西等活动;有些联系已经学过的方向、路线、确定位置以及同级混合运算的知识;还有一天里的气温变化、银行里存钱和支钱的事情和玩扑克牌游戏等。在各种现实问题中都应用逆推的方法,有利于学生积累“倒过去想”的经验,更好地体会逆推是解决问题的策略。二是把事件发生变化的过程有条理地讲清楚。有些用文字讲述,有些用图画表达,还有表格、图文结合和对话等呈现方式。学生容易整理事情有哪些变化,是怎样变化的,以及变化的次序。不仅理解了题意,更为逆推创造了有利条件。三是各题的逆推步数一般是2~3步,只有少量需要4步逆推的题。如第3题,只要根据方向的变化逆推,即使多1步也不会有困难。四是解题的形式灵活多样。有几题需要列式解答,如第1、7、8、9题;有些可以在方格纸上画一画,如第3题;许多题只要说一说或在方框里填一填,如第2、4、5、6、10题。总之,习题的这些特点,都是为了学生能主动地运用逆推的思想方法去解决问题,不断积累经验,逐步内化体会,逐渐升华成策略。
逆
推是解决问题的一种策略,它还需要其他解决问题的策略相配合,尤其是四年级和五年级(上册)教学的整理条件和问题的策略,能使学生清晰地认识事情的发展线索和各次变化的情况。整理信息的形式应该是灵活多样的,例2中第一种整理信息的方法是从左往右列出了事情从开始到结果的一次次变化,从右往左是解决问题逆推时的一步步思考,这种整理形式在本单元可能更适用。当然,有些题也可以用其他形式整理,如“练一练”和练习十六第1题可以画图整理,第7题可以直接看着三幅图画逆推。
另外,练习十六第9题表格右上方的结单余额280元是4月份在银行里的结单余额,它是3月份的结单余额依次支付电话费52元、收存款300元、支付水费28元、支付电费86元后的结余款。因为4月份三笔支出的合计数比存款数少,所以4月份的结单余额比3月份多。3月份的结单余额可以通过计算280+86+28-300+52得出。
《解决问题的策略》教学实录 篇4
教学内容:教学91页的例2,完成随后的“练一练”。
教学目标:
1、 使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、定解题思路,并有效的解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:使学生理解并运用假设的策略解决问题。
教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。
教学过程:
一、导入:
1.回顾策略:昨天我们学习了解决问题的策略,回想一下,到现在为止,我们学过了哪些策略来解决问题?
根据学生回答板书:画图、列表、倒推、替换
2.提出课题:利用这些策略可以方便地帮助我们解决一些实际问题。今天,我们继续来研究解决问题的策略。(揭题)
二、新课:
1、创设情景,提出假设
(边描述边出示例题)提问:你准备怎样来解决这个问题?
学生可能一下子想不到提出假设,这时可提示学生:在解决例1时,碰到这样的问题我们可以先怎样想?
学生独立思考交流想法。
根据学生回答出示各种假设:
a、假设10只都是大船
b、假设10只都是小船
问:你们的想法都是把船假设成同一种船。还有其他想法吗?
c、假设5只大船,5只小船。
2、借助画图,初步感知调整策略
谈话:刚才同学们提出了三种假设,下面我们先来研究假设成同一种船的情况。
(1)讨论画图:
a.如果10只都是大船,那我们可以借助以前学过的什么策略来推算出大船和小船各有多少只呢?(学生说不出来可以追问:想想,上节课我们是用什么策略把数量关系清晰的表达出来的?)学生回答:画图
b.你准备怎么来画呢?引导学生:用简明的符号来表示船和人(课件出示10只大船图,并给学生也提供10只大船图)
(2)研究调整:
a.发现矛盾引发思考:
问题1:假设10只船都是大船,从图上我们可以看出能多坐几个人呢?为什么会多出来呢?
学生独立思考并小组交流
反馈明确:当我们把10只船都假设成大船时,也就是把一些小船看成了大船;当一只小船被看成大船时,每条船会多出2人,所以会多出8人(板书:多出8人)
b.借助画图,研究调整:
问题2:那需要把几只大船调整为小船,才能使10只船正好坐42人呢?)(板书:大船→小船)
先想一想,然后再图上画一画。(学生在提供的图上画一画,教师巡视)
集体交流:选择比较典型的2种画法,上台展示并让学生说说想法
追问:你是怎么想到把4条大船调整为4条小船的呢?
帮助学生初步感知调整策略:一条小船看成一条大船会多出2人,多出的8人正好是4个2人,所以要把4条大船调整为4条小船。
板书:5-3=2(人)
8÷2=4(条)
3、借助列表,再次感知调整策略
谈话:刚才我们借助画图找到了调整的策略,解决了实际问题。我们还可以借助什么方法来寻找调整的策略呢?(列表)这位同学把10只船假设成5只大船和5只小船这样两种不同的船,那接下来我们就借助以前学过的列表的方法来试着推算大船和小船各有多少只。
(1)设计表格:(出示空表格)这张表格中需要哪些数量呢?完善表格项目
大船只数 小船只数 总人数 与42人相比
5 5 5×5+3×5=40 少了2人
(2)借助表格调整:
a.填入假设,发现矛盾:假设5只大船5只小船,就会比42人少2人(板书少2人)
b.引导思考,表格调整:还少2人,也就是这2人还没坐上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整呢?先想一想,然后在表中填一填。再在小组里交流一下你的想法。
c.集体交流,得出方法:
学生展示方法:
方法优化:选取一次调整成功的追问:你是怎么想的呢?
引导学生:少2人,需要把一些小船调整为大船,一条小船调整为一条大船可以多做2人,2÷2=1(条),,所以调整为小船4条,大船6条。
(板书:小船→大船,2÷2=1(条))
4、检验结果
刚才我们算出了有6只大船4只小船,那是不是正确的结果呢?你有办法检验吗?
学生口答,老师板书算式:6×5+4×3=42(人)
6+4=10(条)
还有其它方法吗?想一想,在小组里交流一下。
5、回顾整理,提炼策略
同学们,我们一起回顾一下,刚才我们是怎么样解决这个问题的?
(1)引导学生整体回顾:先提出假设,假设后的总人数与实际人数不一样,这时就需要进行调整,我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:1.假设2.调整3.检验)
(2)突破难点回顾:
a.在借助画图和表格进行调整时,我们又是怎么想的呢?我们先算出假设与实际总数相差多少,再算算每一份相差多少,最后算出调整数量。(并逐一板书)
b.你是如何确定需要把大船调整为小船,还是把小船调整为大船的呢?(结合板书使学生明确:人数多了,需要把大船调整为小船;人数少了,需要把小船调整为大船。)
三、练习:
1.运用策略解决鸡兔同笼问题——巩固画图调整的策略
谈话:下面我们就用这样的策略来解决一些问题。
a.出示:练一练1的题目
b.要知道鸡和兔各有多少只?我们可以怎样来假设呢?(学生提出各种假设)
c.如果假设都是鸡,可以怎样借助画图进行调整来解决这个问题?有困难的学生利用书上的提示来独立完成。
d.交流
《解决问题的策略》教学实录
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。