电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

《圆的认识》课堂实录

2024-06-013

《圆的认识》课堂实录(精选15篇)

《圆的认识》课堂实录 篇1

  《圆的认识》教学案例及反思

  作者:张齐华

  ●背景分析   张齐华《圆的认识》课堂实录及相关整理 

  “圆的认识”一课选自小学数学教材第11册,是在学生认识了长方形、正方形、三角形等多种平面图形的基础上展开,也是小学阶段认识的最后一种常见的平面图形。教材的编排思路是先借助实物揭示出“圆”,让学生感受到圆与现实的密切联系,再引导学生借助“实物”、“圆规”等多种方式画圆,初步感受圆的特征,并掌握用圆规画圆的方法,在此基础上,再引导学生通过折一折、画一画、量一量等活动,帮助学生认识直径、半径、圆心等概念,同时掌握圆的基本特征。这样的编排,学生对于圆的相关概念及特征的理解和把握一般都是建立在教师的明确指引和调控之下,学生相对独立的探索空间不够,而与此同时,学生对于圆所内涵的文化特性也无从感受、体验,对于圆在历史、文化、数学发展过程中与人类结下的不解之缘感受不深。

  基于这样的认识,我试图对本课的教学思路进行重新调整:一方面,通过拓展空间,将学生进一步置身于探索者、发现者的角色,引导学生在认识完圆的一些基本概念后,自主展开对于圆的特征的发现,并在交流对话中完善相应的认知结构;另一方面,我又借助媒体,将自然、社会、历史、数学等各个领域中的“圆”有效整合进本课教学,充分放大圆所内涵的文化特性,努力折射“冰冷”图形背后所散发的独特魅力。

  想起美国学者泽布罗夫斯基,曾因为“在凝望波涛的时候”而产生了写作《圆的历史》这一迷人著作的冲动,而我――一个普通的年轻教师,又是如何想起要在自己的课堂里打破常规、冲破樊篱,演绎“走进圆的世界”这一多少有些另类的教学案例的呢?如今回想起来,是平静水面上漾起的一圈圈涟漪?是阳光下朵朵绽放的金色向日葵?是慈母心中那轮永恒的明月?是“长河落日圆”中夕阳下落日的余辉?是伟大思想家墨子笔下“圆,一中同长也”和数学巨著《周髀算经》中“圆出于方,方出于矩”的召唤?是古老的阴阳太极图所给予的神秘诱惑?是“没有规矩,不成方圆”这一古训背后的力量?还是西方数学哲学中“圆是最美的图形”所带来的无限诱惑?似乎都是,又不完全是。只是有一种莫明的冲动,一直萦绕心头,那就是:怎样让数学课堂再厚重些、开阔些、深邃些、美丽些……藉此,想到了圆,继而,便有了“走进圆的世界”这一大胆尝试。

  ●过程描述

  [一]

  师:对于圆,同学们一定不会感到陌生吧?(是)生活中,你们在哪儿见到过圆形?

  生:钟面上有圆。

  生:轮胎上有圆。

  生:有些钮扣也是圆的。

  ……

  师:今天,张老师也给大家带来一些。见过平静的水面吗,(见过。)如果我们从上面往下丢进一颗小石子(播放动态的水纹,并配以石子入水的声音),你发现了什么?

  生:(激动地)水纹、水纹、圆……(声音此起彼伏)

  师:其实这样的现象在大自然中随处可见,让我们一起来看看。(伴随着优美的音乐,阳光下绽放的向日葵、花丛中五颜六色的鲜花、光折射后形成的美妙光环、用特殊仪器拍摄到的电磁波、雷达波、月球上的环形山等画面一一展现在学生的眼前,见图①)从这些现象中,你同样找到圆了吗?

  生:(惊异地,慨叹地)找到了。

  师:有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?

  生:(激动地)好!

  [二]

  师:俗话说,“没有规矩,不成方圆”。意思是说,如果没有圆规,是――

  生:――画不出圆的。

  师:同学们都准备了一把圆规,你能试着用它在白纸上画出一个圆吗?

  生:能。

  (学生尝试用圆规画圆,交流,明确圆规画圆的基本方法。)

  师:可要是真没有了圆规,比如在圆规发明之前,我们就真画不出一个圆了吗?

  生:不可能。

  师:今天,每个小组还准备了很多其他的材料。你能利用这些材料,试着画出一个圆吗?

  生:能。

  (学生以小组为单位,利用手中的工具和材料画圆。)

  师:张老师发现,每个小组都有了各自精彩的创造。让我们一起来分享。

  生:我们组将圆形的瓶盖按在白纸上,沿着瓶盖的外框画了一个圆。

  师:那叫“拷贝不走样”。(生笑)

  生:我们手中的三角板中就有一个圆形窟窿,利用它,很方便地画出了一个圆。

  师:真可谓就地取材,挺好!(笑)

  生:我们组在绳子的一端系一支铅笔,另一端固定在白纸上,绳子绷紧,将铅笔绕一圈,也画出了一个圆。

  师:看得出,你们组的创作已经初步具备了圆规的雏形。

  生:我们组在绳子的一端系上一块橡皮,抓住绳子的另一端一甩,也同样出现了一个圆。

  师:尽管这一方法没有能在白纸上最终“画”出一个圆,但他们的创造仍然是十分美妙的,不是吗?(生热烈鼓掌)

  师:可是,既然不用圆规,我们依然创造出了这么多画圆的方法,那么俗语中为什么还会有“没有规矩,不成方圆”的说法呢?

  生:我想,大概是古时候的人们没想到这些方法吧?(生笑)

  生:我觉得不是这样,因为,或许一开始,“没有规矩,不成方圆”指的是没有圆规和“矩”画不出方和圆,但是流传到后来,它的意思已经发生了改变,不再仅仅指原来的意思了,而是指很多事情,必须要讲究规矩,遵循章法。(不少同学投以赞许的目光)

  师:真没想到,一条普通的数学规律,经过千年流传,竟逐渐成为我们生活中一条重要的人生准则。当然,同学们能够利用各自的智慧,成功演绎“没有规矩,仍成方圆”,足以说明大家不凡的创造力了。

  [三]

  (通过自学,学生认识完半径、直径、圆心等概念后。)

  师:学到现在,关于圆,该有的知识我们也探讨得差不多了。那你们觉得还有没有什么值得我们深入地去研究?

  生:有(自信地)。

  师:说得好,其实不说别的,就圆心、直径、半径,还蕴藏着许多丰富的规律呢,同学们想不想自己动手来研究研究?(想!)同学们手中都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请同学们动手折一折、量一量、比一比、画一画,相信大家一定会有新的发现。两点小小的建议:第一,研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在学习纸上,到时候一起来交流。第二,实在没啥研究了,别急,老师还为每一小组准备一份研究提示,到时候打开看看,或许对大家的研究会有所帮助。

  (随后,伴随着优美的音乐,学生们以小组为单位,展开研究,并将研究的成果记录在教师提供的“研究发现单”上,并在小组内先进行交流)

  师:光顾着研究也不行,我们还得善于将自己的发现和大家一起交流、一起分享,你们说是吗?(是)很多小组都向张老师推荐了他们刚才的研究发现,张老师从中选择了一部分。下面,就让我们一起来分享大家的发现吧!

  生:我们小组发现圆有无数条半径。

  师:能说说你们是怎么发现的吗?

  生:我们组是通过折发现的。把一个圆先对折,再对折、对折,这样一直对折下去,展开后就会发现圆上有许许多多的半径。

  生:我们组是通过画得出这一发现的。只要你不停地画,你会在圆里画出无数条半径。

  生:我们组没有折,也没有画,而是直接想出来的。

  师:噢?能具体说说吗?

  生:因为连接圆心和圆上任意一点的线段叫做圆的半径,而圆上有无数个点(边讲边用手在圆片上指),所以这样的线段也有无数条,这不正好说明半径有无数条吗?

  师:看来,各个小组用不同的方法,都得出了同样的发现。至少直径有无数条,还需不需要再说说理由了?

  生:不需要了,因为道理是一样的。

  师:关于半径或直径,还有哪些新发现?

  生:我们小组还发现,所有的半径或直径长度都相等。

  师:能说说你们的想法吗?

  生:我们组是通过量发现的。先在圆里任意画出几条半径,再量一量,结果发现它们的长度都相等,直径也是这样。

  生:我们组是折的。将一个圆连续对折,就会发现所有的半径都重合在一起,这就说明所有的半径都相等。直径长度相等,道理应该是一样的。

  生:我认为,既然圆心在圆的正中间,那么圆心到圆上任意一点的距离应该都相等,而这同样也说明了半径处处都相等。

  生:关于这一发现,我有一点补充。因为不同的圆,半径其实是不一样长的。所以应该加上“在同一圆内”,这一发现才准确。

  师:大家觉得他的这一补充怎么样?

  生:有道理。

  师:看来,只有大家互相交流、相互补充,我们才能使自己的发现更加准确、更加完善。还有什么新的发现吗?

  生:我们小组通过研究还发现,在同一个圆里,直径的长度是半径的两倍。

  师:你们是怎么发现的?

  生:我们是动手量出来的。

  生:我们是动手折出来的。

  生:我们还可以根据半径和直径的意义来想,既然叫“半径”,自然应该是直径长度的一半喽……

  师:看来,大家的想象力还真丰富。

  生:我们组还发现圆的大小和它的半径有关,半径越长,圆就越大,半径越短,圆就越小。

  师:圆的大小和它的半径有关,那它的位置和什么有关呢?

  生:应该和圆心有关,圆心定哪儿,圆的位置就在哪儿了。

  生:我们组还发现,圆是世界上最美的图形。

  师:能说说你们是怎样想的吗?

  生:生活中,我们到处都能找到圆。如果没有了圆,我们生活的世界一定会缺乏生机

  生:我们生活的世界需要圆,如果没有了圆,车子就没法自由的行驶……

  师:当然,张老师相信,同学们手中一定还有更多精彩的发现,没来得及展示。没关系,那就请大家下课后将刚才的发现剪下来,贴到教室后面的数学角上,让全班同学一起来交流,一起来分享,好吗?

  生:好。

  [四]

  师:其实,早在二千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:“圆,一中同长也。”所谓一中,就是指一个――

  生:圆心。

  师:那同长又指什么呢?大胆猜猜看。

  生:半径一样长。

  生:直径一样长。

  师:这一发现,和刚才大家的发现怎么样?

  生:完全一致。

  师:更何况,我古代这一发现要比西方整整早一千多年。听到这里,同学们感觉如何?

  生:特别的自豪。

  生:特别的骄傲。

  生:我觉得我国古代的人民非常有智慧。

  师:其实,我国古代关于圆的研究和记载还远不止这些。老师这儿还搜集到一份资料,《周髀算经》中有这样一个记载,说“圆出于方,方出于矩”,所谓圆出于方,就是说最初的圆形并不是用现在的这种圆规画出来的,而是由正方形不断地切割而来的(动画演示:圆向方的渐变过程,如图②)。现在,如果告诉你正方形的边长是6厘米,你能获得关于圆的哪些信息?

  生:圆的直径是6厘米。

  生:圆的半径是3厘米。

  师:说起中国古代的圆,下面的这幅图案还真得介绍给大家(出示图③),认识吗?

  生:阴阳太极图。

  师:想知道这幅图是怎么构成的吗?(想!)原来它是用一个大圆和两个同样大的小圆组合而成的(出示图④)。现在,如果告诉你小圆的半径是3厘米,你又能知道什么呢?

  生:小圆的直径是6厘米。

  生:大圆的半径是6厘米。

  生:大圆的直径是12厘米。

  生:小圆的直径相当于大圆的半径。

  ……

  师:看来,只要我们善于观察,善于联系,我们还能获得更多有用的信息。现在让我们重新回到现实生活中来。平静的水面丢进石子,荡起的波纹为什么是一个个圆形?现在,你能从数学的角度简单解释这一现象了吗?

  生:我觉得石子投下去的地方就是圆的圆心。

  生:石子的力量向四周平均用力,就形成了一个个圆。

  生:这里似乎包含着半径处处相等的道理呢。

  师:瞧,简单的自然现象中,有时也蕴含着丰富的数学规律呢。至于其他一些现象中又为何会出现圆,当中的原因,就留待同学们课后进一步去调查、去研究了。

  师:其实,又何止是大自然对圆情有独钟呢,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏――

  (伴随着优美的音乐,如下的画面一一展现在学生眼前:生活中的圆形拱桥、世界著名的圆形建筑、中国著名的圆形景德镇瓷器、中国民间的圆形中国节、中国传统的圆形剪纸、世界著名的圆形标志设计等等,如图⑤。)

  师:感觉怎么样?

  生:我觉得圆真是太美了!

  生:我无法想象生活中如果没有了圆,将会是什么样子。

  生:生活中因为有了圆而变得格外多姿多彩。

  ……

  师:而这,不正是圆的魅力所在吗?

  [五]

  师:西方数学、哲学史上历来有这么种说法,“上帝是按照数学原则创造这个世界的”。对此,我一直无从理解。而现在想来,石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳……而所有这一切,给予我们的不正是一种微妙的启示吗?至于古老的东方,圆在我们身上遗留下的印痕又何尝不是深刻而广远的呢。有的说,中国人特别重视中秋、除夕佳节;有人说,中国古典文学喜欢以大团圆作结局;有人说,中国人在表达美好祝愿时最喜欢用上的词汇常常有“圆满”“美满”……而所有这些,难道就和我们今天认识的圆没有任何关联吗?那就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!

  ●自我反思

  多少年来,在孩子们的心目中,在教师们的课堂里,数学一直与定理、法则、记忆、运算、冷峻、机械等联系在一起,难学难教、枯燥乏味一直成为障碍学生数学学习的绊脚石。事实上,造成这一现象的原因是多方面的,而一味注重数学知识的传递、数学技能的训练,漠视数学本身所内涵的鲜活的文化背景,漠视浸润在数学发展演变过程中的人类不断探索、不断发现的精神本质、力量以及数学与人类社会(包括自然的、历史的、人文的)千丝万缕的联系,显然应看成造成这一现象的重要原因之一。

  众所周知,数学本质上是一种文化,《数学课程标准》在前言中明确指出:数学的“内容、思想、方法和语言是现代文明的重要组成部分。”如何在课程实施过程中践行并彰显数学的文化本性,让文化成为数学课堂的一种自然本色,我立足从过程与凝聚两个角度进行探索。“圆的认识”一课正是我所作的一次粗浅尝试。

  数学发展到今天,人们对于她的认识已经历了巨大的变化。如今,与其说数学是一些结论的组合,毋宁说她更是一种过程,一种不断经历尝试、反思、解释、重构的再创造过程。因而对于圆的特征的认识,我并没有沿袭传统的小步子教学,即在亦步亦趋的“师生问答”中展开,而是将诸多细小的认知活动统整在一个综合性、探究性的数学研究活动中,通过学生的自主探索、合作交流、共同分享等,引领学生经历了一次“研究与发现”的完整过程。整堂课,“发现与分享”成为真正的主旋律,而知识、能力、方法、情感等恰恰在创造与分享的过程得以自然建构与生成。

  在承认“数学是一种过程”的同时,我们也应清晰地意识到,作为人类文化重要组成部分的数学,在经历了漫长的发展过程后,“凝聚”并积淀下了一代代人创造和智慧的结晶,我们有理由向学生展现数学所凝聚的这一切,引领学生通过学习感受数学的博大与精深,领略人类的智慧与文明。藉此,教学伊始,我们选择从最最常见的自然现象引入,引发学生感受圆的神奇魅力;探究结束,我们介绍了中国古代关于圆的记载,从宏观的视野丰富学生的认识视域;最后,我们更是借助“解释自然中的圆”和“欣赏人文中的圆”等活动,帮助学生在丰富多彩的数学学习中层层铺染、不断推进,努力使圆所具有的文化特性浸润于学生的心间,成为学生数学成长的不竭动力源泉,让数学课堂摆脱原有的习惯思维与阴影,真正美丽起来。

  当然,“理想的课程”如何转化为“现实的课程”,这当中仍然有许多值得深切关注的话题。就拿本课教学而言,实施下来,应该说,学生对于“圆”这一冰冷图形背后所蕴含的人文的、文化的特性的感受还是十分真切的,然而,作为问题的另一方面,对于基本的数学知识、数学技能的掌握,在教学后的反馈中也确实暴露出了一定的问题,尤其表现在部分学生对于圆的半径、直径等概念的理解不够到位,对于直径、半径及其与圆之间的关系的掌握不够透彻等。因而,今后我们在数学课堂演绎数学文化、数学精神等层面的同时,如何兼顾知识与技能的教学,如何使我们的课堂活中有实,实中见活,应该还是有一定的启示意义的。

《圆的认识》课堂实录 篇2

  最近,江苏南京、南通两市的六位名师齐聚南京,就“圆的认识”一课采用“同堂异构”的形式,举行了一次颇有影响的大型教学交流活动。活动中,六位名师各显神通,尽展风采,众多观者不但醉心于他们高超的教学技艺,而且诚服于他们非凡的教学智慧。其中,贲友林老师以儿时的一个小玩具为教学素材,通过精心设计,演绎了精彩的课堂教学。现撷取课中的几个教学片断,与诸位老师共赏。

  [片断一]

  师:我想了解一下,同学们现在都有哪些玩具?

  生1:足球。

  生2:洋娃娃。

  生3:电动小汽车。

  生4:电动飞机。

  ……

  师:想不想看看老师小时候的玩具?

  生:想。

  教师出示

  并在实物投影仪上演示玩具的玩法。

  师:你们知道它是怎么做的吗?

  生5:它是由一根火柴。

  师:还有——

  生6:一张圆片组成的。

  教师板书课题:圆的认识

  [赏析:课伊始,趣已生。从学生异口同声的“想”字中,我们真切地体验到他们学习的积极性已被教师充分地调动起来。是什么激起学生强烈的学习欲望?显然,是玩具,是学生非常熟悉且颇感兴趣的教学资源。在步入新知学习之前,贲老师先以玩具为教学媒介和新知教学的突破口,一下子就抓住了学生的学习注意力,然后借助几秒钟玩具的玩法演示,紧紧地吸引学生的眼球,使学生个个兴致勃勃,学习情绪高涨。最后,通过探讨玩具的组成,自然而贴切地进入了新知的教学。毋庸置疑,这样的教学情境是高效的、有价值的,也是每位教师倾心追求的!]

  [片断二]

  师:如果想做这个小玩具,首先该做什么呢?

  生1:剪个圆。

  师:剪圆先得画圆,用什么画?

  生2:用圆规画。

  师:自己画画看。

  (学生用圆规在白纸上画圆)

  师:用圆规画圆要注意什么?

  生3:注意中间不能动。

  师:哪儿不能动?

  生4:针尖。

  生5(补充):这两只脚之间的宽度也不能变。

  生6:只能拿着这个地方(演示),如果拿其他地方位置可能会移动,画得就不圆了!

  师:说得真好!谁再来说说圆的画法?

  生7:我们的手应抓住圆规的把柄,然后把它旋转一周,圆就画成了。

  师:想不想再画几个圆?

  生:想!

  师:用刚才的方法,在纸上再画两个圆。

  (学生操作)

  师:如果要画和我这个玩具一样大的圆,你们能不能画出来?

  生:能。

  师:你们准备怎么画?说说看。

  生8:首先要知道圆的半径。

  师(板书:半径):什么是半径?

  生9(指示):一半的距离,量这里。

  师:他的意思是量这么长的距离。大家估计一下,这个圆的半径有多长?

  生10:3厘米。

  师:厉害!是3厘米。那现在你们能画出来吗?

  生:能。

  师:先把这个圆画下来,然后再用剪刀把它剪下来。

  (学生动手操作)

  师:做好的同学思考一下:做这个玩具,火柴棒要从哪儿穿过去?

  生11:中心。

  生12:圆心。

  师(板书:圆心):对!这叫圆心。圆心在哪里?你们能找到吗?

  生:能。

  师:谁能说说你是怎么找到圆心的?

  生13:就是圆规针尖经过的那个点。

  师(板书:o):请同学们找出圆心,用铅笔把圆心点出来,并且标注字母“o”。

  (学生标出圆心)

  师:谁再来说说这是一个多大的圆呀?

  生14:这是一个半径为3厘米的圆。

  师:你们能不能在圆上画出一条半径?试试看!

  (学生画半径)

  师:谁来展示一下你画的半径?

  (一名学生在实物投影仪上展示)

  师:看看,半径是一条——

  生15:直线。

  生16:线段。

  师:有人说是直线,有人说是线段,到底是什么呢?

  生17:是线段。因为直线是可以无限延长的,而半径可以测量,是有限的。

  师:它的一端在——

  生18:圆心,还有一端在圆的边上。

  师:他画得对吗?

  生:对。

  师(板书:r):半径一般用字母r来表示。

  师:除了可以说这是一个半径为3厘米的圆外,还有不同的说法吗?

  生19:这是一个直径为6厘米的圆。

  师:他又说了一个词。

  生20:直径。

  师:请你在圆中画一条直径。

  (学生操作后,师生讨论直径和半径的关系)

  师:你们看,我们认识了圆心、半径、直径,还会画半径和直径。下面搞个小比赛,比赛什么呢?画半径和直径。同桌中,左边同学画半径,右边同学画直径,在规定时间内,看谁画得多。现在请同学们拿好铅笔,开始。

  (学生迅速在圆中画半径或直径)

  师:时间到,谁来汇报一下,你画了多少条半径?

  生20:我画了9条半径。

  生21:我画了15条半径。

  生22:我画了18条半径。

  师:那直径呢?

  生23:我画了15条直径。

  生24:我画了17条直径。

  ……

  师:如果你有足够的时间,你能画出多少条半径和直径?

  生25:可以画无数条半径。

  生26:可以画无数条直径。

  师:对!我们可以画无数条半径和直径,只要时间许可,这是一场没有输赢的比赛!

  [赏析:新知的教学,贲老师仍然围绕玩具这一教学资源展开教学。在探讨玩具制作方法的过程中,让学生边操作边学习圆的相关概念,以实现预定的教学目标。通过剪圆片,让学生多次尝试画圆,教会学生画圆的方法;在画圆的过程中,经过师生交流,明确了半径、直径的意义;在确定火柴棒的位置时引出圆心的概念,赋予原本抽象的数学概念(圆心)以直观的外壳(火柴棒的位置),整个教学过程显得自然而流畅。一个小小的玩具,将圆的所有概念知识集于一身,如此妙招,让人不得不为贲老师独具匠心的精妙设计而称道。其间,我们也能直观地感受到贲老师捕捉课堂教学契机的意识和把握生成性资源的教学理念。把解决问题的权利留给学生,从学生的已有知识和经验出发实施教学,让学生在实践操作中感悟数学知识,培养学生操作、分析以及估计的能力,这些都使学生的主体地位得到了充分的彰显!]

  [片断三]

  师:下面,我们把这个玩具组装起来。火柴棒怎么穿过去呢?

  生1:用圆规戳个洞。

  师:可以。做好后,在桌子上转转看!

  (学生借助课前准备的学具做小玩具)

  师:看样子,这个玩具虽简单,但做起来却不是那么简单,而且转起来也不是那么好看。如果要让玩具转得更漂亮的话,可以在上面画上图案。

  教师出示5种玩具图案,让学生观察。(图略)

  师:谁来说说第一个是什么图案?

  生2:一个大圆里画了两个小圆。

  师:如果这个大圆和我们的一样,小圆怎么画?

  生2:用大圆的半径作直径画的。大圆的半径除以2就是小圆的半径,即3÷2=1.5(厘米)。

  师:再看其他几幅图,你觉得哪几幅图的画法和图1差不多?

  生3:图3的画法和图1差不多。

  师:图3的画法和图1相似。那么,这两幅图案,同学们在哪儿看到过?

  生4:像电视上的大风车。

  师:第4幅图呢?

  生5:像三片叶子。

  ……

  师:再看看图5,生活中哪些物体是这个样子的?

  生6:口服液的一种商标。

  生7:像车轮。

  生8:像方向盘。

  生9:像奔驰车的标志。

  生10:像运动器材上转的东西。

  师:同学们的想像力真丰富!

  [赏析:大家都知道,“做中学”是一种切实可行的有效的教学方法。让学生在操作实践中学习、感悟、理解知识,一方面有利于学生主动建构新知,另一方面也能让学生获得轻松、愉悦的学习体验。在这个教学环节中,贲老师再次以玩具为课堂教学的“主线”,将圆的知识与玩具上的图案巧妙、有机地衔接起来,不仅达成了教学目的,而且丰富、拓展了学习内容。在比较玩具图案的过程中,贲老师让学生展开联想和想像,并且与生活接轨,让学生真切地感受到圆在生活中的广泛应用,体验到生活处处都有“数学”。另外,此教学环节也与前面两个教学环节合为一体,共同构建了一堂完整、精彩的课堂教学。

《圆的认识》课堂实录 篇3

  一、说教材

  (一)说教学内容

  “圆的认识”一是北师版九年义务教育六年制小学数学第十一册第一单元“圆”中的第一节课。这节课的内容包括:圆的特征、圆心、直径,半径和会用圆规画圆。

  (二)教材简析

  “圆的认识”是在学生直观认识圆和已经较系统地认识了平面上直线图形的基础上进行教学的。它是学习曲线图形的开始。它与“圆的周长和面积”、“轴对称图形”的学习关系十分密切。所以正确树立圆的表象,掌握圆的特征,是本课的首要任务。

  (三)教学目标

  根据教学内容、课标要求以及学生的认识特点、年龄特征确定本节课的教学目标为:

  1、 结合生活实际,通过观察操作等认识圆的特征;认识同一个圆里半径都相等和直径都相等。体会圆的特征及圆心和半径的作用,会用圆规画圆。

  2、结合具体情境体验数学与日常生活密切联系,能用圆的知识来解释生活中的简单现象。

  3、通过通过观察操作想象等活动,发展学生的空间观念。

  (四)教学重点、难点本节课的教学重点:体会圆的特征及圆心和半径的作用,会用圆规画圆。

  难点:是掌握圆的特征;

  二、说教法、学法

  根据教学内容知识间的内在联系和学生的认知规律,遵循教学有法,教无定法,贵在得法的原则:

  1、根据本节课的教学内容及学生的认识水平和认知规律,这节课采用演示、操作等直观方法进行教学。通过多媒体演示和学生的画、折、量等动手操作,使学生获得充足的、丰富的感性材料。在充分感知的基础上,通过叙述操作过程,把感知经过思维内化为表象,并在教师的指导下,抽象概括出圆心、半径、直径等概念,使学生掌握圆的知识,并学会思维的方法。

  2、在教学中充分利用教材,采用导读法和讨论法,引导学生通过自主学习去思考问题,掌握知识。指导学生通过自学教材和讨论,认识圆的特征,

  三、 说教学程序

  (一)套圈游戏引入,通过前两副套圈游戏的图画,引导学生思考得出游戏的不公平而需要设计一个公平的游戏方案:围成一个圆形。

  (二)观察、操作、探求新知

  1、学生动手通过初步画圆剪圆摸圆感知圆不同于以前所学的各种平面图形。它是一种平面曲线图形。

  2、认识圆的各部分名称

  通过自学认识圆心,半径,直径。形纸片,通过折,画,量让学生明白这些折痕相交于圆中心的一点,这一点叫做圆心。进一步加深理解半径和直径的意义。

  这部分教学,通过学生折一折,画一画,量一量的操作,在有了充分感知的基础上,通过语言描述操作,把感知内化为表象,并在老师的指导下,抽象概括出圆心、半径、直径等概念。

  3圆心和半径的作用:

  再次通过学生动手按定点,定长的要求画两个圆,并进行比较概括圆心确定圆的位置,半径确定圆的大小。

  (三)练习

  通过基本的填空判断练习使学生能够巩固本节课所学知识。并通过“车轮为什么做成圆的”等问题让学生用圆的知识解释生活中的简单问题。

  四、反思

  在这一节课忽视了教给学生如何正确使用圆规画圆。

《圆的认识》课堂实录 篇4

  一、教材说明;

  九年义务教育六年制小学数学[人教版]第十一册《圆的认识》

  二、教学目标 ;

  1、使学生认识圆,掌握圆的特征;了解圆的各部分名称。

  2、会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。

  3、能正确熟练地掌握用圆规画圆的操作步骤。

  4、培养学生动手操作、主动探究、自主发现、交流合作的能力。

  三、教学流程;

  1、导入  新课

  (1)学生活动(边玩边观察)。

  ①球、球相碰玩具表演。②线系小球旋转玩具表演。

  [教师要求学生将观察到的形状告诉大家,学生异口同声回答:圆形。这里,教师采用学生感兴趣的玩具表演活动,既直观形象,又易于发现,进而抽象出“圆”。学生从“玩”入手,不知不觉进入学习状态。学习兴趣浓厚,乐于参与,利于学习。]

  (2)师生对话(学生可相互讨论后回答)。

  教师:日常生活中或周围的物体上哪里有圆?

  学生:在钟面、圆桌、人民币硬币上……都有圆。

  教师:请同学们用手摸一摸,体会一下有什么感觉?

  学生用眼看一看、用手摸一摸,感觉:……闭封的、弯曲的。

  教师(多媒体演示:圆形物体→圆):这(指圆)和我们以前学过的平面图形,有什么不同呢?

  学生:以前我们学过的平面图形如长方形、正方形、三角形、平行四边形和梯形的共同特征,都是由线段围成的直线图形。而我们现在看到的(指圆)这种图形是由曲线围

《圆的认识》课堂实录

《圆的认识》课堂实录(精选15篇)《圆的认识》课堂实录 篇1  《圆的认识》教学案例及反思  作者:张齐华  ●背景分析 张齐华《圆...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?