电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

能被 2 , 5 整除的数

2024-06-053

能被 2 , 5 整除的数(通用13篇)

能被 2 , 5 整除的数 篇1

  教学建议

  教材分析

  能被2、5、3整除的数是在学生已经学过约数和倍数的基础上进行教学的,这部分内容既是分解质因数、求最大公约数、最小公倍数的重要基础,也是学习约分、通分知识的必要前提.这是因为在以后学习分数运算的时候,很重要的一点是看约分和通分掌握的是否熟练,而约分和通分掌握的是否熟练,在很大程度上取决于以下两点:1、能不能很快的看出分子、分母的公约数;2、能不能很快的求出几个分数的最小公倍数;而求最大公约数和最小公倍数的基础,就是找出一个数的质因数.所以,掌握能被2、5、3整除的数的特征,对于学生学好本单元的知识具有非常重要的基础.

  教材在编排中按照“2、5、3”的顺序教学,而不是按照“2、3、5”的顺序教学是因为的特征比较明显,用的是同一种判定方法:看一个数的个位;而能被3整除的数需要看一个数的各位,难以理解.

  教学本节知识后,教师要注意对学生的所学知识进行扩展,如:能被“4和25”“8和125”“9”“7、11、13”整除的特征,能被6整除(也就是能同时被2和3整除)的特征,提高学生综合运用知识的能力.

  教法建议

  能被2、5、3整除的数是在学生已经学过约数和倍数的基础上进行教学的,通过学习,使学生初步掌握能被2、5、3整除的数的特征,提高学生的分析判断能力.

  的特征,可以采用观察发现法进行教学.通过“1、大量举例:任意说出2的倍数(可以不按照2的1倍、2倍、3倍……的顺序举例);2、观察归纳:这些数有什么共同特征?3、举例验证:任意说出一些数字进行判断(可以是教师举例,学生判断,也可以学生相互举例判断)”这三个步骤进行教学.

  能被3整除的数的特征学生不易掌握,因此在教学中教师要充分的为学生提供活动空间,加强学生的动手操作,在操作过程中发现其本质特征.教师在教学时可以采取以下几个步骤:1、区别对比:首先让学生举例说明的特征,然后举出一些能被3整除的数,继续利用看一个数的个位这种方法判定是否能被3整除.2、实践操作:通过教师和学生摆小棍的方法,发现规律.3、归纳总结:学生讨论并尝试总结能被3整除的数的特征.4、举例验证:选择一些比较大的数字进行判定,然后再实际除一下,验证规律的正确性.5、扩展提高:有条件的可以讲解“弃3法”.

  教学目标

  1、使学生初步掌握的特征.

  2、使学生知道奇数、偶数的概念.

  教学重点

  掌握的特征及奇数、偶数的概念.

  教学难点

  灵活运用的特征及奇数、偶数的概念进行综合判断.

  教学步骤

  一、铺垫孕伏(课件演示:) 下载

  1、我们已经掌握了约数、倍数的意义,谁能根据整除的意义判断这几个数能否被2或5整除?

  8267     6972 1867     5625

  2、导入  :你们通过笔算都能判断出哪个数能被2整除,哪个数能被5整除.想不想不用笔算就判断出一个数能否被2或5整除呢?这节课我们一起研究的特征.

  (板书:)

  二、探究新知(继续演示课件:) 下载

  (一)教学能被2整除的数的特征.

  1、新课导入  :写出20以内(包括20)2的倍数

  2、教师提问:你发现了什么?(学生观察并讨论)

  3、引导学生明确:右边的数是左边的数的倍数,都能被2整除.

  右边的数个位上是0、2、4、6、8.

  (教师板书:个位上是0、2、4、6.8的数都能被2整除)

  4、反馈练习:

  (1)判断:下面这些数能否被2整除.

  102、718、900、96、34

  (2)学生相互举例并判断:能被2整除的数

  (二)教学奇数和偶数的概念.

  1、教师提问:什么样的数不能被2整除?(个位上不是0、2、4、6、8的数)

  也就是个位上是什么样的数?(1、3、5、7、9)

  教师总结并板书:

  能被2整除的数,叫做偶数.2、4、6、8.10……是偶数.

  不能被2整除的数,叫做奇数.1、3、5、7、9……是奇数.

  2、学生举例:说明奇数、偶数.

  3、判断:0是不是偶数?为什么?

  总结:因为0能被2整除,所以也是偶数.

  (三)教学能被5整除的数的特征.

  1、求出30以内(包括30)5的倍数.

  观察5的倍数(即能被5整除的数)有什么特征?

  2、引导学生总结:个位上是0或5的数,都能被5整除.(板书)

  3、反馈练习:大家检验具有这种特征的数是不是能被5整除.

  4、判断:下面哪些数能被2整除?哪些能被5整除?

  60、75、106、130、521

  思考:哪些数既能被2整除又能被5整除呢?(60 130)

  说一说你是怎样判断的?

  能同时被2和5整除的数有什么特征?

  总结:个位上是0的数既能被2整除又能被5整除.

  三、全课小结

  这节课你学到了哪些知识?的特征是今后学习通分、约分、分数运算的重要基础,希望同学们掌握并能灵活运用.

  四、随堂练习

  1、下列数哪些是奇数,哪些是偶数?

  52、77、 124、501、3170、4296、6003

  2、按要求将下面的数分类.

  47、75、96、100、135、246、369、718、900

  (1)能被2整除的数:

  (2)能被5整除的数:

  (3)能同时被2和5整除的数:

  3、判断.

  (1)一个自然数不是奇数就是偶数.(    )

  (2)能被2除尽的数都是偶数.(    )

  (3)能同时被2、5整除的数个位上的数字一定是0.(    )

  4、填空.

  (1)能被2整除的最小的三位数是(    ),最大的三位数是(    ).

  (2)能被5整除的最小两位数是(    ),最大的两位数是(    ).

  5.选择题

  (1)(    )的数是偶数.

  A.能被2除尽    B.能被2整除    C.个位上是0、2、4、6、8

  (2)任何奇数加1后(    ).

  A.一定能被2整除   B.不能被2整除   C.无法判断

  (3)一个奇数相邻的两个数 (    ).

  A.都是奇数  B. 都是偶数   C.一个是奇数,一个是偶数

  (4)任何一个自然数都能被5(    ).

  A.整除   B.除尽   C.除不尽

  (5)三个偶数的和(   ).

  A.一定是偶数    B.可能是偶数   C.可能是奇数

  五、课后作业 

  用5、6、8排成一个三位数,使它是2的倍数;再排成一个三位数,使它是5的倍数.

  各有几种排法?

  六、板书设计

能被 2 , 5 整除的数 篇2

  教学建议

  教材分析

  能被2、5、3整除的数是在学生已经学过约数和倍数的基础上进行教学的,这部分内容既是分解质因数、求最大公约数、最小公倍数的重要基础,也是学习约分、通分知识的必要前提.这是因为在以后学习分数运算的时候,很重要的一点是看约分和通分掌握的是否熟练,而约分和通分掌握的是否熟练,在很大程度上取决于以下两点:1、能不能很快的看出分子、分母的公约数;2、能不能很快的求出几个分数的最小公倍数;而求最大公约数和最小公倍数的基础,就是找出一个数的质因数.所以,掌握能被2、5、3整除的数的特征,对于学生学好本单元的知识具有非常重要的基础.

  教材在编排中按照“2、5、3”的顺序教学,而不是按照“2、3、5”的顺序教学是因为的特征比较明显,用的是同一种判定方法:看一个数的个位;而能被3整除的数需要看一个数的各位,难以理解.

  教学本节知识后,教师要注意对学生的所学知识进行扩展,如:能被“4和25”“8和125”“9”“7、11、13”整除的特征,能被6整除(也就是能同时被2和3整除)的特征,提高学生综合运用知识的能力.

  教法建议

  能被2、5、3整除的数是在学生已经学过约数和倍数的基础上进行教学的,通过学习,使学生初步掌握能被2、5、3整除的数的特征,提高学生的分析判断能力.

  的特征,可以采用观察发现法进行教学.通过“1、大量举例:任意说出2的倍数(可以不按照2的1倍、2倍、3倍……的顺序举例);2、观察归纳:这些数有什么共同特征?3、举例验证:任意说出一些数字进行判断(可以是教师举例,学生判断,也可以学生相互举例判断)”这三个步骤进行教学.

  能被3整除的数的特征学生不易掌握,因此在教学中教师要充分的为学生提供活动空间,加强学生的动手操作,在操作过程中发现其本质特征.教师在教学时可以采取以下几个步骤:1、区别对比:首先让学生举例说明的特征,然后举出一些能被3整除的数,继续利用看一个数的个位这种方法判定是否能被3整除.2、实践操作:通过教师和学生摆小棍的方法,发现规律.3、归纳总结:学生讨论并尝试总结能被3整除的数的特征.4、举例验证:选择一些比较大的数字进行判定,然后再实际除一下,验证规律的正确性.5、扩展提高:有条件的可以讲解“弃3法”.

  教学目标 

  1、使学生初步掌握的特征.

  2、使学生知道奇数、偶数的概念.

  教学重点

  掌握的特征及奇数、偶数的概念.

  教学难点 

  灵活运用的特征及奇数、偶数的概念进行综合判断.

  教学步骤 

  一、铺垫孕伏(课件演示:) 下载

  1、我们已经掌握了约数、倍数的意义,谁能根据整除的意义判断这几个数能否被2或5整除?

  8267     6972 1867     5625

  2、导入  :你们通过笔算都能判断出哪个数能被2整除,哪个数能被5整除.想不想不用笔算就判断出一个数能否被2或5整除呢?这节课我们一起研究的特征.

  (板书:)

  二、探究新知(继续演示课件:) 下载

  (一)教学能被2整除的数的特征.

  1、新课导入  :写出20以内(包括20)2的倍数

  2、教师提问:你发现了什么?(学生观察并讨论)

  3、引导学生明确:右边的数是左边的数的倍数,都能被2整除.

  右边的数个位上是0、2、4、6、8.

  (教师板书:个位上是0、2、4、6.8的数都能被2整除)

  4、反馈练习:

  (1)判断:下面这些数能否被2整除.

  102、718、900、96、34

  (2)学生相互举例并判断:能被2整除的数

  (二)教学奇数和偶数的概念.

  1、教师提问:什么样的数不能被2整除?(个位上不是0、2、4、6、8的数)

  也就是个位上是什么样的数?(1、3、5、7、9)

  教师总结并板书:

  能被2整除的数,叫做偶数.2、4、6、8.10……是偶数.

  不能被2整除的数,叫做奇数.1、3、5、7、9……是奇数.

  2、学生举例:说明奇数、偶数.

  3、判断:0是不是偶数?为什么?

  总结:因为0能被2整除,所以也是偶数.

  (三)教学能被5整除的数的特征.

  1、求出30以内(包括30)5的倍数.

  观察5的倍数(即能被5整除的数)有什么特征?

  2、引导学生总结:个位上是0或5的数,都能被5整除.(板书)

  3、反馈练习:大家检验具有这种特征的数是不是能被5整除.

  4、判断:下面哪些数能被2整除?哪些能被5整除?

  60、75、106、130、521

  思考:哪些数既能被2整除又能被5整除呢?(60 130)

  说一说你是怎样判断的?

  能同时被2和5整除的数有什么特征?

  总结:个位上是0的数既能被2整除又能被5整除.

  三、全课小结

  这节课你学到了哪些知识?的特征是今后学习通分、约分、分数运算的重要基础,希望同学们掌握并能灵活运用.

  四、随堂练习

  1、下列数哪些是奇数,哪些是偶数?

  52、77、 124、501、3170、4296、6003

  2、按要求将下面的数分类.

  47、75、96、100、135、246、369、718、900

  (1)能被2整除的数:

  (2)能被5整除的数:

  (3)能同时被2和5整除的数:

  3、判断.

  (1)一个自然数不是奇数就是偶数.(    )

  (2)能被2除尽的数都是偶数.(    )

  (3)能同时被2、5整除的数个位上的数字一定是0.(    )

  4、填空.

  (1)能被2整除的最小的三位数是(    ),最大的三位数是(    ).

  (2)能被5整除的最小两位数是(    ),最大的两位数是(    ).

  5.选择题

  (1)(    )的数是偶数.

  A.能被2除尽    B.能被2整除    C.个位上是0、2、4、6、8

  (2)任何奇数加1后(    ).

  A.一定能被2整除   B.不能被2整除   C.无法判断

  (3)一个奇数相邻的两个数 (    ).

  A.都是奇数  B. 都是偶数   C.一个是奇数,一个是偶数

  (4)任何一个自然数都能被5(    ).

  A.整除   B.除尽   C.除不尽

  (5)三个偶数的和(   ).

  A.一定是偶数    B.可能是偶数   C.可能是奇数

  五、课后作业 

  用5、6、8排成一个三位数,使它是2的倍数;再排成一个三位数,使它是5的倍数.

  各有几种排法?

  六、板书设计 

能被 2 , 5 整除的数 篇3

  教学目标

  在理解的基础上,掌握的特征,并能利用特征判断一个数能否被3整除.

  教学重点

  归纳能被3整除数的特征.

  教学难点

  归纳能被3整除数的特征。

  教学过程

  一、引入(课件演示:) 下载

  1、教师提问:能被2整除的数有什么特征?

  能被5整除的数有什么特征?

  能同时被2、5整除的数有什么特征?

  2、导入  

  (1)今天这节课,我们一起来研究.(板书课题)

  提问:谁能随便说个数?这个数要能被3整除.

  (2)教师:老师也说一个数,请你用3除一除,看这个数能否被3整除.(板书:123)

  如果你们说这个数能被3整除,那么老师立刻就可以说:132、231、213、312、321这些数统统都能被3整除!信不信?请除除看.

  为什么会有如此结果?到底有什么特征呢?现在我们一起来研究.

  二、新课(继续演示课件:) 下载

  1、我们先来研究12这个数.12为什么能被3整除?可以这样想:(教师演示)

  12根铅笔(10根一捆)

  提问:这10根铅笔,若3根一捆可以打成几捆?还剩几根?(3捆剩1根)

  教师:3个3也就是一个9,那么我们可以把10想成一个9加上1.9肯定能被3整除,可以不再考虑,只需考虑现在未打成整捆的零散根数,10根中剩下的1根加上另外2根是3根,正好打成一捆,说明12能被3整除.

  板书:

  2、再研究一个数:24

  演示:一个10可以想成一个9加1,那么20可以想成什么呢?(2个9加2)

  2个9加可以不再考虑,现在只需考虑谁?(2加4)

  如果3根一捆,正好打成两捆,说明什么?(24能被3整除)

  3、照这样我们来分析一下27

  板书:

  推理:一个10我们把它想成一个9加1,两个10我们把它想成两个9加2,照这样想,30可以想成什么?(三个9加3),40呢?  50呢?  80呢?

  4、分析一个较大的数:126(教师演示)

  把100根想成一个99加1,两个10想成两个9加2,零散根数则1+2+6=9.9能被3整除,所以126能被3整除.

  5、照此思路分析438

  板书:

  验证:用3整除,证明刚才的分析正确

  6、用此思路分析523

  板书:

  7、总结:请同学们观察板书,有什么发现吗?能被3整除的数有什么特征?

  概括能被3整除数的特征:一个数各个数位上的数的和能被3整除,这个数就能被3整除.

  三、巩固练习(继续演示课件:) 下载

  1、口答:现在你知道为什么你们说123能被3整除,老师就立刻可以说132、231……统统都能被3整除吗?

  2、判断下面各数能否被3整除:207、891、193、450、222、136

  3、在□中填几,这个数就能被3整除?

  17□(指导思路:找出最小的数,然后依次加3)

  4□2(要求一次说全)

  □25□(不必说全,即问:只要保证什么就可以?)

  4、下面的数是能被3整除,能被2整除,还是能被5整除?

  58、115、207、80、108、45

  5、比赛:利用给出6个数字:0,1,2,3,4,5,在30秒钟内,看谁能组出最多个能同时被2、3、5整除的三位数.

  四、思考练习

  看谁能用最快的方法判断出5169这个四位数能否被3整除.

  (引出弃3的倍数法,只考虑数字5+1)

  五、全课总结

  今天我们学习了哪些新知识?的特征是什么?

  六、布置作业 

  1、写出三个能被3整除的偶数;

  2、写出三个能被3整除的奇数;

  3、先求出下面每个数各位上的数的和,看能不能被9整除;再算一算下面各数能不能被 9整除.

  162   378     586    632    2988

  七、板书设计

能被 2 , 5 整除的数 篇4

  教学目标 

  在理解的基础上,掌握的特征,并能利用特征判断一个数能否被3整除.

  教学重点

  归纳能被3整除数的特征.

  教学难点 

  归纳能被3整除数的特征。

  教学过程 

  一、引入(课件演示:) 下载

  1、教师提问:能被2整除的数有什么特征?

  能被5整除的数有什么特征?

  能同时被2、5整除的数有什么特征?

  2、导入  

  (1)今天这节课,我们一起来研究.(板书课题)

  提问:谁能随便说个数?这个数要能被3整除.

  (2)教师:老师也说一个数,请你用3除一除,看这个数能否被3整除.(板书:123)

  如果你们说这个数能被3整除,那么老师立刻就可以说:132、231、213、312、321这些数统统都能被3整除!信不信?请除除看.

  为什么会有如此结果?到底有什么特征呢?现在我们一起来研究.

  二、新课(继续演示课件:) 下载

  1、我们先来研究12这个数.12为什么能被3整除?可以这样想:(教师演示)

  12根铅笔(10根一捆)

  提问:这10根铅笔,若3根一捆可以打成几捆?还剩几根?(3捆剩1根)

  教师:3个3也就是一个9,那么我们可以把10想成一个9加上1.9肯定能被3整除,可以不再考虑,只需考虑现在未打成整捆的零散根数,10根中剩下的1根加上另外2根是3根,正好打成一捆,说明12能被3整除.

  板书:

  2、再研究一个数:24

  演示:一个10可以想成一个9加1,那么20可以想成什么呢?(2个9加2)

  2个9加可以不再考虑,现在只需考虑谁?(2加4)

  如果3根一捆,正好打成两捆,说明什么?(24能被3整除)

  3、照这样我们来分析一下27

  板书:

  推理:一个10我们把它想成一个9加1,两个10我们把它想成两个9加2,照这样想,30可以想成什么?(三个9加3),40呢?  50呢?  80呢?

  4、分析一个较大的数:126(教师演示)

  把100根想成一个99加1,两个10想成两个9加2,零散根数则1+2+6=9.9能被3整除,所以126能被3整除.

  5、照此思路分析438

  板书:

  验证:用3整除,证明刚才的分析正确

  6、用此思路分析523

  板书:

  7、总结:请同学们观察板书,有什么发现吗?能被3整除的数有什么特征?

  概括能被3整除数的特征:一个数各个数位上的数的和能被3整除,这个数就能被3整除.

  三、巩固练习(继续演示课件:) 下载

  1、口答:现在你知道为什么你们说123能被3整除,老师就立刻可以说132、231……统统都能被3整除吗?

  2、判断下面各数能否被3整除:207、891、193、450、222、136

  3、在□中填几,这个数就能被3整除?

  17□(指导思路:找出最小的数,然后依次加3)

  4□2(要求一次说全)

  □25□(不必说全,即问:只要保证什么就可以?)

  4、下面的数是能被3整除,能被2整除,还是能被5整除?

  58、115、207、80、108、45

  5、比赛:利用给出6个数字:0,1,2,3,4,5,在30秒钟内,看谁能组出最多个能同时被2、3、5整除的三位数.

  四、思考练习

  看谁能用最快的方法判断出5169这个四位数能否被3整除.

  (引出弃3的倍数法,只考虑数字5+1)

  五、全课总结

  今天我们学习了哪些新知识?的特征是什么?

  六、布置作业 

  1、写出三个能被3整除的偶数;

  2、写出三个能被3整除的奇数;

  3、先求出下面每个数各位上的数的和,看能不能被9整除;再算一算下面各数能不能被 9整除.

  162   378     586    632    2988

  七、板书设计 

能被 2 , 5 整除的数 篇5

  教学目标 

  (一)通过操作发现能被3整除数的特征。

  (二)培养学生观察、分析、概括的能力。

  (三)渗透理论来源于实践的辩证唯物主义观点。

  教学重点和难点

  (一)能被3整除的数的特征。

  (二)特征的归纳过程。

  教学用具

  教具:投影片。

  学具:每位同学准备15根小棒,数位顺序表。(只到万级)

  教学过程 设计

  (一)复习准备

  1.下列数中,哪些能被2整除?哪些能被5整除?哪些能同时被2和5整除?(投影片)

  85,87,94,32,50,60,102,143,230,540,405,725,819,528。

  2.说一说能被2或者5整除的数的特征?能同时被2和5整除的数的特征?

  3.能被2和能被5整除的数的共同特点是什么?(都是看个位数字。)

  教师:我们已学习了能被2,5整除的数的特征,并能利用这些特征,很快地对一个数能否被2或5整除作出判断。下面我们继续研究一些数的整除特征。

  教师板书:12问能否被3整除。逐次把12改为120,121,123,124,126,1263,请学生口答它们能否被3整除。(竖行排列,能被3整除的画√)

  请学生任意说出一个数,老师判断它能否被3整除。(能整除的画√)

  教师:(指板书)请观察,能被3整除的数个位数字有什么特点吗?(找不出来。)

  教师:能被3整除的数的个位数找不出特征,它们具有什么特征呢?这节课我们就来研究这个问题。板书课题:能被3整除的数。

  (二)学习新课

  1.请学生操作摆数并判断能否被3整除。

  (1)

能被 2 , 5 整除的数

能被 2 , 5 整除的数(通用13篇)能被 2 , 5 整除的数 篇1  教学建议  教材分析  能被2、5、3整除的数是在学生已经学过约...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?