电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

多边形

2024-06-051

多边形(精选17篇)

多边形 篇1

  【知识要点】

  1.三角形:由不在同一条直线上的三条线段首尾顺次链接所围成的封闭图形叫做三角形

  这三条线段叫做这个三角形的边;(AB、BC、CA)

  相邻两条边的公共端点叫做这个三角形的顶点;(A、B、C)

  相邻两条边所夹的角叫做这个三角形的内角,又叫做这个三角形的角(∠A、∠B、∠C)

  三角形的内角的邻补角叫做这个三角形的外角

  2.三角形的表示为△ABC

  3.三角形的三条重要线段:高、中线、内角平分线(三条高所在的直线都交于一点,这个点叫

  做三角形的垂心;三条中线交于一点,这个点叫做三角形的重心;

  三条内角平分线交于一点,这个点叫做三角形的内心)

  4.三角形内角和定理以及相关的结论

  (1)三角形的内角和为180°

  (2)直角三角形的两个锐角互余

  (3)三角形的外角和为360°

  (4)三角形的一个外角等于与它不相邻的两个内角的和

  (5)三角形的一个外角大于与它不相邻的任何一个内角

  5.三角形的三边关系定理

  三角形的任意两边之和都大于第三条边;任意两边之差都小于第三条边

  6.三角形具有稳定性

  7.:由在同一平面内,不在同一直线上的若干条线段首尾顺次连接所围成的封闭图形叫

  做

  这些线段叫做这个的边;

  相邻两条边的公共端点叫做这个的顶点;

  相邻两条边所夹的角叫做这个的内角,又叫做这个的角

  的内角的邻补角叫做这个的外角

  8.对角线:连结不相邻的两个顶点的线段叫做的对角线

  由一个顶点出发的对角线有(n-3)条;(n表示边数)

  共有条对角线(n表示边数)

  9.的内角和及外角和

  (1)的内角和为(n-2).180°(n表示边数)

  (2)的外角和为360°

  【阶段练习】

  一、回答下列各问题

  1.什么是三角形?它有哪些元素?通常用什么符号来表示它及三个角所对的边?

  2.为什么屋架、桥梁及电杆的支架多采用三角形的形状?

  3.如果△ABC的三条边长分别为(12、13、14)及(10、20、30),这样的三角形能成立吗?

  为什么?

  4.设△ABC的边长分别为a、b、c,那么这三条边的边长须具有什么条件,才能将△ABC画

  出来

  5.△ABC中有几条角平分线?试画图说明

  6.什么是三角形的高?一个三角形有几条高?三角形的高的位置是否一定在形内?为什么?

  试画图说明

  7.三角形的一条中线把这个三角形分成两部分,这两个部分的面积有什么关系?为什么?

  8.三角形的三个内角分别为α、β、γ,则α+β+γ的值是多少?

  9.三角形的一个外角与它不相邻的两个内角之间有什么关系?

  二、填空题

  1.三角形的外角和是内角和的_____________倍

  2.四边形的外角和是内角和的____________倍

  3.六边形的外角和是内角和的_______________倍

  4.一个的内角和是900°,则这个是________边形

  三、解答题

  已知AC、AD是五边形ABCDE的对角线,求证:AB+BC+CD+DE+EA>AC+CD+DA

多边形 篇2

  教学设计示例1

  教学目标 :

  (1)了解用量角器等分圆心角来等分圆;掌握用尺规作圆内接正方形和正六边形,能作圆内接正八边形、正三角形、正十二边形;

  (2)通过画图培养学生的画图能力;

  (3)对学生进行审美教育,提高学生的审美能力,促进学生对几何学习的热情.

  教学重点:

  (1)量角器等分圆心角来等分圆;

  (2)尺规作圆内接正方形和正六边形.

  教学难点 :

  准确作图.

  教学活动设计:

  (一)提出问题:

  由于正多边形在生产、生活实际中有广泛的应用性,所以会应是学生必备能力之一.

  问题1:已知⊙O的半径为2cm,求作圆的内接正三角形.

  教师组织学生进行,方法不限.

  目的:充分发展学生的发散思维.

  (二)解决问题:

  以下为解决问题的参考方案:(上课时教师归纳学生的方法)

  (1)度量法:①用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°.

  ②用量角器度量,使∠AOB=∠BOC=∠COA=120°.

  (2)尺规法:(如上右图)用圆规在⊙O上截取长度等于半径(2cm)的弦,连结AB、BC、CA即可.

  (3)计算与尺规结合法:由正三角形的半径与边长的关系可得,正三角形的边长= R=2(cm),用圆规在⊙O上截取长度为2(cm)的弦AB、AC,连结AB、BC、CA即可.

  (三)研究、归纳

  1、用量角器等分圆:

  依据:等圆中相等的圆心角所对应的弧相等.

  操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正多边形的边长误差较大.

  问题2:把半径为2cm⊙O九等份.

  (先画半径2cm的圆,然后把360°的圆心角9等份,每一份40°)

  归纳:用量角器等分圆,方法简便,可以把圆任意n等分,但有误差.

  2、用尺规等分圆:

  (1)问题3:作正四边形、正八边形.

  教师组织学生,分析、作图.

  归纳:只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形……

  (2)问题4:作正六、三、十二边形.

  教师组织学生,分析、作图.

  归纳:先作出正六边形,则可作正三角形,正十二边形,正二十四边形………理论上我们可以一直画下去,但大家不难发现,随着边数的增加,正多边形越来越接近于圆,正多边形将越来越难画.

  (四)总结

  (1)用量角器等分圆周作正n边形;

  (2)用尺规作正方形及由此扩展作正八边形、用尺规作正六边形及由此扩展作正12边形、正三角形.

  (五)作业  教材P173中13.

  教学设计示例2

  教学目标 :

  1、能应用解决实际问题;会画正五边形的近似图;了解等分圆的美丽图形;

  2、通过运用正多边形的有关计算和画图解决实际问题培养学生分析问题、解决问题的能力;

  3、对学生进行审美教育和文化传统教育和爱国教育;

  4、渗透数学建模思想.

  教学重点:

  应用正多边形的计算与画图解决实际问题.

  教学难点 :

  数学模型的建立,和正多边形的有关计算问题.

  教学活动设计:

  (一)知识回顾:

  分别画半径2cm的圆内接正六边形、内接正三角形、内接正十二边形、内接正方形、内接正八边形.

  要求①尺规作图;②说明画法;③指出作图依据;④学生独立完成.

  教师巡视,对画的好的学生给于表扬,对有问题的学生给于指导.

  (二)画图应用:

  例1、有一个亭子,它的地基是半径为4m的正八边形,(1)用1∶200的比例尺画出地基平面图;(2)求地基的边长a8(精确到0.01m)和面积S8(精确到0.1m2)

  教师引导学生分析:①比例尺= ;②正八边形的半径R=2cm;③如何解正八边形和近似计算.

  (1)画法:1.以任意一点O为圆心,以4m的 ,即2cm为半径画⊙O(如图).

  2.作⊙O的直径AC、BD,使AC⊥BD.

  3.作平分 、的直径EG、FH.

  4.顺次连结AE、EB、BF、FC、CG、GD、DH、HA.

  八边形AEBFCGDH就是亭子地基的正八边形.

  (2)解(学生分析解题方法):

  (m)

  (m)

  (m2)

  答:(略)

  我国民间相传有五边形的近似画法,画法口诀是:“九五顶五九,八五两边分”,它的意义如图:如果正五边形的边长为10,作它的中垂线AF,取AF=15.4,在AF上取FM=9.5,则AM=5.9,过点M作BE⊥AF,在BE上取BM=ME=8.连结AB、BC、DE、EA即可.

  例2、用民间相传画法口诀,画边长为20mm的正五边形.

  分析:要画边长20mm的正五边形,关键在于计算出口诀中各部分的尺寸,由于要画的正五边形与口诀正五边形相似,所以要画的正五边形的各部分应与口诀正五边形各部分对应成比例.由已知知道要画正五边形的边CD=20mm.请同学们算出各部分的尺寸,并按口诀画出正五边形ABCDE.

  (画法:略.参看教材P170)

  说明:虽然这种画法是近似画法,但是这种画法的精确度却是很高的.有能力的学生课下可以探究和计算.

  通过正五边形的民间近似画法的教学弘扬民族文化,揭示其科学性,渗透实践出真知的观点.

  (三)优美图案欣赏和画法:

  请学生欣赏下列图案,分析图案结构,画出图案.

  组织学生进行,可以让学生独立完成,也可以让学生协作完成,对画的较好的同学给予表彰.

  (四)总结

  1、运用正多边形的知识解决实际问题;

  2、学习了民间画正五边形的近似画法;

  3、学习了分解与组合有关正多边形的几何图案.

  (五)作业 

  教材P171中练习1;P173中12;P173中14.

  探究活动

  图案设计

  某学校在教学楼前的圆形广场中,准备建造一个花园,并在花园内分别种植牡丹、月季和杜鹃三种花卉。为了美观,种植要求如下:

  (1)种植4块面积相等的牡丹、4块面积相等的月季和一块杜鹃。(注意:面积相等必须由数学知识作保证)

  (2)花卉总面积等于广场面积

  (3)花园边界只能种植牡丹花,杜鹃花种植在花园中间且与牡丹花没有公共边。

  请你设计种植方案:(设计的方案越多越好;不同的方案类型不同.)

  答案提示:

多边形 篇3

  教学目标:

  1、进一步理解和掌握多边形面积计算的方法,认识不同图形之间的联系,建构知识网络,能正确应用公式进行有关计算。

  2、在整理多边形面积计算公式推导的过程中进一步体会转化的思想,逐步形成用转化的策略解决问题的能力。

  3、发展空间观念,培养自主学习的意识、解决问题后的反思意识。

  教学重点:

  建构科学完整的知识体系,沟通知识之间的联系,灵活解决问题。

  教学难点:

  理解掌握多边形面积之间的联系,整理完善知识结构。

  教具准备:

  ppt课件、图片、复习单、易错题单等。

  教学过程:

  一、创设情景,引入课题

  观察南湖校区全景图,呈现土地形状,提出问题从而唤起学生记忆,引出课题。

  (设计意图:利用图片为学生创设学习的情景,将数学和生活联系起来,提出问题,自然引出了本课复习的内容,为后面的复习做好铺垫。)

  二、整理回忆,再现旧知

  师:课前我们已经对这五种多边形的面积计算知识进行了回忆整理。请问,关于多边形的面积计算你都整理了什么?(计算公式、公式的推导等)

  (一)展示收集到的学生自主整理的复习单,让学生体会整理面积计算公式的方式多样化。

  (二)回忆旧知

  1、忆公式。

  学生根据自主整理,汇报交流多边形的面积计算公式。(文字表达、字母表达式)

  2、忆推导。

  (1)小组内交流公式的推导过程。

  (2)小组代表全班交流。

  (3)师引导学生小结:在推导上述图形的面积时,都用到了转化的方法。转化是一种学习的好方法。

  (三) 理清联系,深化认识

  (四) 公式延伸,进一步感受各种图形的面积计算公式的联系

  课件动态演示:梯形上底长度渐变为0时,梯形演变为三角形。梯形的上底长度渐变成等于下底时,梯形演变为平行四边形。

  三、纠错分享,查漏补缺

  四、巩固应用,拓展提升

  1、 有一块草坪,求草坪的面积。

  2、有一块平行四边形菜地,DE=EF=FC,GB=GD,其中阴影部分种的'小白菜,面积是8 ,求这块平行四边形菜地的面积是多少平方米?

  五、全课总结,自我评价

  师:通过这节课的复习,你有什么收获或者感受呢?

  (设计意图:通过对本节课复习的知识和复习方法的总结,将知识系统化,也教给学生整理知识的方法,培养学生的能力。)

多边形 篇4

  一、素质教育目标

  (一)知识教学点

  1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.

  2.了解四边形的不稳定性及它在实际生产,生活中的应用.

  (二)能力训练点

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

  2.通过推导四边形内角和定理,对学生渗透化归思想.

  3.会根据比较简单的条件画出指定的四边形.

  4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

  (三)德育渗透点

  使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

  (四)美育渗透点

  通过四边形内角和定理数学,渗透统一美,应用美.

  二、学法引导

  类比、观察、引导、讲解

  三、重点·难点·疑点及解决办法

  1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

  2.教学难点 :理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

  3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪、胶片、四边形模型、常用画图工具

  六、师生互动活动设计

  教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

  第一课时

  七、教学步骤 

  【复习引入】

  在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题.

  【引入新课】

  用投影仪打出课前画好的教材中P119的图.

  师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).

  【讲解新课】

  1.四边形的有关概念

  结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:

  (1)要结合图形.

  (2)要与三角形类比.

  (3)讲清定义中的关键词语.如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).

  (4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系.

  (5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.

  (6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.

  2.四边形内角和定理

  教师问:

  (1)在图4-3中对角线AC把四边形ABCD分成几个三角形?

  (2)在图4-6中两条对角线AC和BD把四边形分成几个三角形?

  (3)若在四边形ABCD 如图4-7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形.

  我们知道,三角形内角和等于180°,那么四边形的内角和就等于:

  ①2×180°=360°如图4—6;

  ②4×180°-360°=360°如图4-7.

  例1  已知:如图4—8,直线 于B、 于C.

  求证:(1) ; (2) .

  本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.

  【总结、扩展】

  1.四边形的有关概念.

  2.四边形对角线的作用.

  3.四边形内角和定理.

  八、布置作业 

  教材P128中1(1)、2、 3.

  九、板书设计 

  四边形(一)

  四边形有关概念

  四边形内角和

  例1

  十、随堂练习

  教材P122中1、2、3.

多边形 篇5

  1、 公式:

  长方形:周长=(长+宽)×2             字母公式:c=(a+b)×2

  面积=长×宽               字母公式:s=ab

  正方形:周长=边长×4                字母公式:c=4a

  面积=边长×边长             字母公式:s=a

  平行四边形的面积=底×高             字母公式: s=ah

  底=面积÷高    高=面积÷底

  三角形的面积=底×高÷2              字母公式: s=ah÷2

  (底=面积×2÷高;高=面积×2÷底)

  梯形的面积=(上底+下底)×高÷2      字母公式: s=(a+b)h÷2

  上底=面积×2÷高-下底   下底=面积×2÷高-上底

  高=面积×2÷(上底+下底)

  2、单位换算的方法:大化小,乘进率;小化大,除以进率。

  3、常用的单位间的进率

  长度单位:

  1千米=1000米   1米=10分米   1分米=10厘米   1厘米=10毫米

  面积单位:

  1平方千米=100公顷     1公顷=10000平方米

  1平方米=100平方分米   1平方分米=100平方厘米

  4、图形之间的关系:

  两个完全相同的三角形可以拼成一个平行四边形。

  两个完全相同的梯形可以拼成一个平行四边形。

  等底等高的平行四边形面积相等;等底等高的三角形面积相等。

  等底等高的平行四边形面积是三角形面积的2倍。

  如果一个三角形和一个平行四边形等面积,等底,则三角形的高是平行四边形的2倍。

  如果一个三角形和一个平行四边形等面积,等高,则三角形的底是平行四边形的2倍。

  5、把长方形框架拉成平行四边形,周长不变,面积变小了。

  6、求组合图形面积的方法:

  (1)仔细观察,确定组合图形可以分割或添补成哪些可以计算面积的基本图形。

  (2)找到计算这些基本图形的面积所需要的数据。

  (3)分别计算这些基本图形的面积,然后再相加或相减。

多边形 篇6

  教学设计示例1

  教学目标 :

  (1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理;

  (2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力;

  (3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想.

  教学重点:

  正多边形的概念与的关系的第一个定理.

  教学难点 :

  对定理的理解以及定理的证明方法.

  教学活动设计:

  (一)观察、分析、归纳:

  观察、分析:1.等边三角形的边、角各有什么性质?

  2.正方形的边、角各有什么性质?

  归纳:等边三角形与正方形的边、角性质的共同点.

  教师组织学生进行,并可以提问学生问题.

  (二)正多边形的概念:

  (1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.

  (2)概念理解:

  ①请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形,…….)

  ②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?

  矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.

  (三)分析、发现:

  问题:正多边形与圆有什么关系呢?

  发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.

  分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?

  (四)多边形和圆的关系的定理

  定理:把圆分成n(n≥3)等份:

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形;

  (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.

  我们以n=5的情况进行证明.

  已知:⊙O中, = = = = ,TP、PQ、QR、RS、ST分别是经过点A、B、C、D、E的⊙O的切线.

  求证:(1)五边形ABCDE是⊙O的内接正五边形;

  (2)五边形PQRST是⊙O的外切正五边形.

  证明:(略)

  引导学生分析、归纳证明思路:

  弧相等

  说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形;②经过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形.

  (2)要注意定理中的“依次”、“相邻”等条件.

  (3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形.

  (五)初步应用

  P157练习

  1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么?

  2.求证:正五边形的对角线相等.

  3.如图,已知点A、B、C、D、E是⊙O的5等分点,画出⊙O的内接和外切正五边形.

  (六)小结:

  知识:(1)正多边形的概念.(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.

  能力和方法:正多边形的证明方法和思路,正多边形判断能力

  (七)作业  教材P172习题A组2、3.

  教学设计示例2

  教学目标 :

  (1)理解正多边形与圆的关系定理;

  (2)理解正多边形的对称性和边数相同的正多边形相似的性质;

  (3)理解正多边形的中心、半径、边心距、中心角等概念;

  (4)通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;

  教学重点:

  理解正多边形的中心、半径、边心距、中心角的概念和性质定理.

  教学难点 :

  对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解.

  教学活动设计:

  (一)提出问题:

  问题:上节课我们学习了正多边形的定义,并且知道只要n等分(n≥3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形.反过来,是否每一个正多边形都有一个外接圆和内切圆呢?

  (二)实践与探究:

  组织学生自己完成以下活动.

  实践:1、作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么?

  2、作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么?

  探究1:当三角形为正三角形时,它的外接圆和内切圆有什么关系?

  探究2:(1)正方形有外接圆吗?若有外接圆的圆心在哪?(正方形对角线的交点.)

  (2)根据正方形的哪个性质证明对角线的交点是它的外接圆圆心?

  (3)正方形有内切圆吗?圆心在哪?半径是谁?

  (三)拓展、推理、归纳:

  (1)拓展、推理:

  过正五边形ABCDE的顶点A、B、C、作⊙O连结OA、OB、OC、OD.

  同理,点E在⊙O上.

  所以正五边形ABCDE有一个外接圆⊙O.

  因为正五边形ABCDE的各边是⊙O中相等的弦,所以弦心距相等.因此,以点O为圆心,以弦心距(OH)为半径的圆与正五边形的各边都相切.可见正五边形ABCDE还有一个以O为圆心的内切圆.

  (2)归纳:

  正五边形的任意三个顶点都不在同一条直线上

  它的任意三个顶点确定一个圆,即确定了圆心和半径.

  其他两个顶点到圆心的距离都等于半径.

  正五边形的各顶点共圆.

  正五边形有外接圆.

  圆心到各边的距离相等.

  正五边形有内切圆,它的圆心是外接圆的圆心,半径是圆心到任意一边的距离.

  照此法证明,正六边形、正七边形、…正n边形都有一个外接圆和内切圆.

  定理: 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

  正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.正n边形的每个中心角都等于 .

  (3)巩固练习:

  1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______.

  2、正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.

  3、若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.

  4、正n边形的一个外角度数与它的______角的度数相等.

  (四)正多边形的性质:

  1、各边都相等.

  2、各角都相等.

  观察正三角形、正方形、正五边形、正六边形是不是轴对称图形?如果是,它们又各应有几条对称轴?

  3、正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心.

  4、边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.

  5、任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

  以上性质,教师引导学生自主探究和归纳,可以以小组的形式研究,这样既培养学生的探究问题的能力、培养学生的研

多边形

多边形(精选17篇)多边形 篇1  【知识要点】  1.三角形:由不在同一条直线上的三条线段首尾顺次链接所围成的封闭图形叫做三角形  ...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?