电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

《三角形的中位线》教学设计

2024-06-051

《三角形的中位线》教学设计(精选3篇)

《三角形的中位线》教学设计 篇1

  【教案背景】

  1、面向学生:初二

  2、课时:

  3、学科:数学

  4、学生准备:提前预习本节课的内容,尺规和练习本。

  【教材分析】

  1、教材的地位和作用:

  本节课是初二数学下册第十八章18.1.2平行四边形判定中的第三课时三角形中位线的内容。三角形中位线既是前面已学过的平行线、全等三角形、平行四边形性质等知识内容的应用和深化,同时为进一步学习梯形、任意四边形的中位线打下基础,尤其是在判定两直线平行和论证线段倍分关系时常常用到。在三角形中位线定理的证明及应用中,处处渗透了归纳、类比、转化等化归思想,它是数学解题的重要思想方法,对拓展学生的思维有着积极的意义。

  2、教学目标:

  知识目标:

  (1)理解三角形中位线的概念

  (2)会证明三角形的中位线定理

  (3)能应用三角形中位线定理解决相关的问题;

  过程与方法目标:

  进一步经历“探索—发现—猜想—证明”的过程,发展推理论证的能力。体会合情推理与演绎推理在获得结论的过程中发挥的作用。

  情感目标

  画一个任意三角形的中位线,用猜测和度量判断中位线与第三边的位置和数量关系,进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。

  3、教学重难点:

  重点:理解并应用三角形中位线定理。

  难点:三角形中位线定理的证明和运用。

  【教学方法】

  学生在前面的数学学习中具有了一定的合作学习的经验,为了让学生进一步经历、猜测、证明的过程,我采取:启发式教学,在课堂教学。

  【教学过程】

  (一)回顾三角形中位线:

  三角形一个顶点和对边中点连结的线段

  情感分析:让学生首先通过原有知识三角形中线【端点特征】来引入三角形中位线更加好理解。

  (二)概念提取:像(EF、FD、DE)的线段的端点有什么特点?

  情感分析:通过问题,让学生去发现中位线端点的特点,加深对中位线定义的提取和理解。

  (三)引出三角形的中位线定义:

  连接三角形两边中点的线段叫做中位线。

  情感分析:直接引出定义,让学生更容易去理解中位线的含义并且对端点特征的理解。快而简单且易懂。

  (四)概念对比记忆:

  (1)相同之处——都和边的中点有关;

  (2)不同之处:三角形中位线:中点连线;三角形中线:中点与端点(顶点)连线

  情感分析:通过对比记忆,加深两者的区别与联系,对中位线的理解进一步提升。

  (五)探究中位线的性质:

  一般的三角形的中位线(DE)与第三边(BC)存在哪些关系?

  问题:①DE与BC存在怎么样的位置和数量关系?

  【作图观察并猜想】

  ②结合图形,请找出已知部分?要求证部分?

  情感分析:对定义的理解后,方便对中位线性质的一个探究,在探究过程中,让学生通过画任意三角形的一条中位线,并且通过学习工具(量角器、三角板、刻度尺和圆规),通过量同位角和三角板的`推移来观察猜测中位线与第三边是平行的,再来通过刻度尺测量是它的二分之一。由于方法的局限性(误差),所以探究用数学客观的逻辑推理中位线的性质。而且通过命题来找出已知和求证部分也是学生必须掌握的重难点,通过这里也可以让学生再次巩固提升。

  (六)证明中位线与第三边的关系:

  已知:在△ABC中,D、E分别是AB和AC中点

  证明:

  方法一:证明:延长DE到F,使EF=DE,连结CF.

  方法二:证明:如图,延长DE至F,使EF=DE,连接CD、AF、CF

  情感分析:通过证明的方法,引导学生做辅助线时候的逻辑推理,多问学生为什么会想到这样去做辅助线的。倍长线段是怎么想到的?为什么会想到连接CF?为什么会想到证明四边形?引发学生思考。

  (七)归纳:

  三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半。

  用符号语言表示:∵DE是△ABC的中位线

  ∴

  位置关系且数量关系

  情感分析:通过刚刚的证明引

《三角形的中位线》教学设计

《三角形的中位线》教学设计(精选3篇)《三角形的中位线》教学设计 篇1  【教案背景】  1、面向学生:初二  2、课时:  3、学科...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?