电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

《椭圆及其标准方程》教案

2024-06-052

《椭圆及其标准方程》教案(通用11篇)

《椭圆及其标准方程》教案 篇1

  教学目标:

  (一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.

  (二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.

  (三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.

  教学重点:椭圆的定义和椭圆的标准方程.

  教学难点:椭圆标准方程的推导.

  教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.

  教具准备:多媒体课件和自制教具:绘图板、图钉、细绳.

  教学过程:

  (一)设置情景,引出课题

  问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片.

  (二)启发诱导,推陈出新

  复习旧知识:圆的定义是什么?圆的标准方程是什么形式?

  提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?

  引出课题:椭圆及其标准方程

  (三)小组合作,形成概念

  动画演示椭圆形成过程.

  提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?

  下面请同学们在绘图板上作图,思考绘图板上提出的问题:

  1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?

  2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?

  3.当绳长小于两图钉之间的距离时,还能画出图形吗?

  学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:

  椭圆

  线段

  不存在

  并归纳出椭圆的定义:平面内与两个定点 、 的距离的和等于常数(大于 )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.

  (四)椭圆标准方程的推导:

  1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简.

  2.提问:如何建系,使求出的方程最简?

  由各小组讨论,请小组代表汇报研讨结果.

  各组分别选定一种方案:(以下过程按照第一种方案)

  ①建系:以 所在直线为x轴,以线段 的垂直平分线为y轴,建立直角坐标系。

  ②设点:设 是椭圆上任意一点,为了使 的坐标简单及化简过程不那么繁杂,设 ,则

  设 与两定点 的距离的和等于

  ③列式: ∴

  ④化简:(这里,教师为突破难点,进行设问:我们怎么化简带根式的式子?对于本式是直接平方好还是整理后再平方好呢?)

《椭圆及其标准方程》教案 篇2

  椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

  椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

  椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。

  设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。

《椭圆及其标准方程》教案 篇3

  一、教学目标

  (1)知识与能力目标:学习椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。

  (2)过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。

  (3)情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。

  二、教学重点、难点

  (1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。

  (2)教学难点:椭圆标准方程的建立和推导。

  三、教学过程

  (一)创设情境,引入概念

  1、动画演示,描绘出椭圆轨迹图形。

  2、实验演示。

  思考:椭圆是满足什么条件的点的轨迹呢?

  (二)实验探究,形成概念

  1、动手实验:学生分组动手画出椭圆。

  实验探究:

  保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?

  思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?

  2、概括椭圆定义

  引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。

  教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。

  思考:焦点为的椭圆上任一点M,有什么性质?

  令椭圆上任一点M,则有

  (三)研讨探究,推导方程

  1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?

  2、研讨探究

  问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点M,有

  ,尝试推导椭圆的方程。

  思考:如何建立坐标系,使求出的方程更为简单?

  将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。

  方案一方案二

  按方案一建立坐标系,师生研讨探究得到椭圆标准方程

  =1,其中b2=a2-c2(b>0);

  选定方案二建立坐标系,由学生完成方程化简过程,可得出=1,同样也有a2-c2=b2(b>0)。

  教师指出:我们所得的两个方程=1和=1都是椭圆的标准方程。

  (四)归纳概括,方程特征

  1、观察椭圆图形及其标准方程,师生共同总结归纳

  (1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;

  (2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;

  (3)椭圆标准方程中三个参数a,b,c关系:;

  (4)椭圆焦点的位置由标准方程中分母的大小确定;

  (5)求椭圆标准方程时,可运用待定系数法求出a,b的值。

  2、在归纳总结的基础上,填下表

  标准方程

  图形a,b,c关系焦点坐标焦点位置

  在x轴上

  在y轴上

  (五)例题研讨,变式精析

  例1、求适合下列条件的椭圆的标准方程

  (1)两个焦点的坐标分别是,椭圆上一点P到两焦点距离和等于10。

  (2)两焦点坐标分别是,并且椭圆经过点。

  例2、(1)若椭圆标准方程为及焦点坐标。

  (2)若椭圆经过两点求椭圆标准方程。

  (3)若椭圆的一个焦点是,则k的值为。

  (A)(B)8(C)(D)32

  例3、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向x轴作垂线段,求线段中点M的轨迹。

  (六)变式训练,探索创新

  1、写出适合下列条件的椭圆标准方程

  (1),焦点在x轴上;

  (2)焦点在x轴上,焦距等于4,并且经过点P;

  2、若方程表示焦点在y轴上的椭圆,则k的范围。

  3、已知B,C是两个定点,周长为16,求顶点A的轨迹方程。

  4、已知椭圆的焦距相等,求实数m的值。

  5、在椭圆上上求一点,使它与两个焦点连线互相垂直。

  6、已知P是椭圆上一点,其中为其焦点且,求三解形面积。

  (七)小结归纳,提高认识

  师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。

  (八)作业训练,巩固提高

  课本第96页习题§8。1第3题、第5题、第6题。

  课后思考题:

  1、知是椭圆的两个焦点,AB是过的弦,则周长是。

  (A)2a(B)4a(C)8a(D)2a2b

  2、的两个顶点A,B的坐标分别是边AC,BC所在直线的斜

  率之积等于,求顶点C的轨迹方程。

  2、与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线?

  教学设计说明

  椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

  椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

  椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。

  设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。

《椭圆及其标准方程》教案 篇4

  一、教材分析

  1、教材的地位及作用

  圆锥曲线是高考重点考查内容。“椭圆及其标准方程”是《圆锥曲线与方程》第一节内容,是继学习圆以后运用“曲线和方程”理论解决具体的二次曲线的又一实例。

  从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;

  从方法上说,它为后面研究双曲线、抛物线提供了基本模式;

  所以,无论从教材内容,还是从教学方法上都起着承上启下的作用,它是学好本章内容的关键。因此搞好这一节的教学,具有非常重要的意义。

  2、教学目标

  根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  (1)、知识目标:掌握椭圆的定义及其标准方程,通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法。

  (2)、能力目标:让学生通过自我探究、合作学习等,提高学生实际动手、合作学习以及运用知识解决实际问题的能力。

  (3)、情感目标:在教学中充分揭示“数”与“形”的内在联系,体会数与形的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于钻研的精神。

  3、教学重点、难点

  教学重点:椭圆的定义及椭圆的标准方程。

  教学难点:椭圆标准方程的建立和推导。

  在学习本课前,学生已学习了直线与圆的方程,对曲线和方程的概念有了一些了解与运用的经验,用坐标法研究几何问题也有了初步的认识。但由于学生学习解析几何时间还不长、学习程度也较浅,对坐标法解决几何问题掌握还不够。另外,学生对含有两个根式之和(差)等式化简的运算生疏,去根式的策略选择不当等是导致“标准方程的推导”成为学习难点的直接原因。

  据以上对教材及学情的分析,确定椭圆的定义及其标准方程为本课的教学重点;椭圆标准方程的推导为本课的难点。

  4、教材处理

  根据新课程大纲要求,本节课的内容特点以及结合我班学生的实际情况,我把本节内容分2个课时进行教学。

  第一课时,主要研究椭圆的定义、标准方程的推导。

  第二课时,运用椭圆的定义求曲线的轨迹方程。

  二、教学方法和教学手段

  课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:

  教学方法:我采用的是引导发现法、探索讨论法等。

  1、引导发现法:用动画演示动点的轨迹,启发学生归纳、概括椭圆定义。

  2、探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;

  有利于突出重点,突破难点,发挥其创造性。

  引导发现法和探索讨论法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性。

  教学手段:利用多媒体课件教学,化抽象为具体,降底学生学习难度,增强动感及直观感,增大教学容量,提高教学质量。

  三、学法指导

  “授人以鱼,不如授人以渔。”

  教会学生:

  1、动手尝试。

  2、仔细观察。

  3分析讨论。

  4、抽象出概念,推出方程。

  这样有利于学生发挥学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程。

  四、教学过程

  教学流程设计:认识椭圆→画椭圆→定义椭圆→推导椭圆方程→椭圆方程知识讲解→椭圆方程知识运用→本课小结→作业布置

  五、教学评价

  1、这节课围绕“认识椭圆→画椭圆→定义椭圆→推导椭圆方程→椭圆方程知识讲解→椭圆方程知识运用”这一主线展开。

  2、教学中学生通过观看动画、动手实践,自己总结出椭圆定义,符合从感性上升为理性的认识规律。

  3、在整个教学过程中,采用引导发现法、探索讨论法等教学方法,注重数形结合等数学思想的渗透。培养学生勇于探索、勇于创新的精神。

《椭圆及其标准方程》教案 篇5

  一、概说

  1.教材分析:

  椭圆及其标准方程是圆锥曲线的基础,它的学习方法对整个这一章具有导向和引领作用,直接影响其他圆锥曲线的学习。是后继学习的基础和范示。同时,也是求曲线方程的深化和巩固。

  2.教学分析:

  椭圆及其标准方程是培养学生观察、分析、发现、概括、推理和探索能力的极好素材。本节课通过创设情景、动手操作、总结归纳,应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生掌握坐标法的规律,掌握数学学科研究的基本过程与方法。

  3.学生分析:

  高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。

  基于上述分析,我采取的是教学方法是“问题诱导--启发讨论--探索结果”以及“直观观察--归纳抽象--总结规律”的一种研究性教学方法,注重“引、思、探、练”的结合。

  引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。

  我设定的教学重点是:椭圆定义的理解及标准方程的推导。

  教学难点是:标准方程的推导。

  二、目标说明:

  根据数学教学大纲要求确立“三位一体”的教学目标。

  1.知识与技能目标:

  理解椭圆定义、掌握标准方程及其推导。

  2.过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。

  3.情感、态度和价值观目标:

  (1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。

  (2)进行数学美育的渗透,用哲学的观点指导学习。

  三、过程说明:

  依据“一个为本,四个调整”的新的教学理念和上述教学目标设计教学过程。“以学生发展为本,新型的师生关系、新型的教学目标、新型的教学方式、新型的呈现方式”体现如下:

  (一)对教材的重组与拓展:根据教学目标,选择教学内容,遵循拓展、开放、综合的原则。教材中对椭圆定义尽管很严密,但不够直观,所以增加了影音文件:海尔波谱彗星的运行轨道图,最后,让学生交流用几何画板画椭圆以及5个探究性问题,作为对教材的拓展。

  (二)在教学过程中的体现:

  1.新课导入:以影音文件“海尔波谱彗星的运行轨道示意图”导入,呈现方式具有新异性,激发学习兴趣;画板画图,增强动手操作意识,直观形象从而引入椭圆定义,进而研究椭圆标准方程。

  2.新课呈现:

  学生通过观看文件、动手操作,然后自己总结椭圆定义,符合从感性上升为理性的认知规

《椭圆及其标准方程》教案

《椭圆及其标准方程》教案(通用11篇)《椭圆及其标准方程》教案 篇1  教学目标:  (一)知识目标:掌握椭圆的定义及其标准方程,能正确推...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?