方程的根与函数的零点
方程的根与函数的零点(精选7篇)
方程的根与函数的零点 篇1
第一课时: 3.1.1
教学要求:结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;掌握零点存在的判定条件.
教学重点:体会函数的零点与方程根之间的联系,掌握零点存在的判定条件.
教学难点:恰当的使用信息工具,探讨函数零点个数.
教学过程:
一、复习准备:
思考:一元二次方程 +bx+c=o(a 0)的根与二次函数y=ax +bx+c的图象之间有什么关系?
.二、讲授新课:
1、探讨函数零点与方程的根的关系:
① 探讨:方程x -2x-3=o 的根是什么?函数y= x -2x-3的图象与x轴的交点?
方程x -2x+1=0的根是什么?函数y= x -2x+1的图象与x轴的交点?
方程x -2x+3=0的根是什么?函数y= x -2x+3的图象与x轴有几个交点?
② 根据以上探讨,让学生自己归纳并发现得出结论: → 推广到y=f(x)呢?
一元二次方程 +bx+c=o(a 0)的根就是相应二次函数y=ax +bx+c的图象与x轴交点横坐标.
③ 定义零点:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.
④ 讨论:y=f(x)的零点、方程f(x)=0的实数根、函数y=f(x) 的图象与x轴交点的横坐标的关系?
结论:方程f(x)=0有实数根 函数y=f(x) 的图象与x轴有交点 函数y=f(x)有零点
⑤ 练习:求下列函数的零点 ; → 小结:二次函数零点情况
2、教学零点存在性定理及应用:
① 探究:作出 的图象,让同学们求出f(2),f(1)和f(0)的值, 观察f(2)和f(0)的符号
②观察下面函数 的图象,在区间 上______(有/无)零点; • _____0(<或>). 在区间 上______(有/无)零点; • _____0(<或>). 在区间 上______(有/无)零点; • _____0(<或>).
③定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
④ 应用:求函数f(x)=lnx+2x-6的零点的个数. (试讨论一些函数值→分别用代数法、几何法)
⑤小结:函数零点的求法
代数法:求方程 的实数根;
几何法:对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.
⑥ 练习:求函数 的零点所在区间.
3、小结:零点概念;零点、与x轴交点、方程的根的关系;零点存在性定理
三、巩固练习:1. p97, 1,题 2,题 (教师计算机演示,学生回答)
2. 求函数 的零点所在区间,并画出它的大致图象.
3. 求下列函数的零点: ; ; ;
.
4. 已知 :(1) 为何值时,函数的图象与 轴有两个零点;
(2)如果函数至少有一个零点在原点右侧,求 的值.
5. 作业:p102, 2题;p125 1题
第二课时: 3.1.2用二分法求方程的近似解
教学要求:根据具体函数图象,能够借助计算器用二分法求相应方程的近似解. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.
教学重点:用二分法求方程的近似解.
教学重点:恰当的使用信息工具.
教学过程:
一、复习准备:
1. 提问:什么叫零点?零点的等价性? 零点存在性定理?
零点概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.
方程f(x)=0有实数根 函数y=f(x) 的图象与x轴有交点 函数y=f(x)有零点
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
2. 探究:一元二次方程求根公式? 三次方程? 四次方程?
材料:高次多项式方程公式解的探索史料:在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(abel)和伽罗瓦(galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中十分重要的课题
二、讲授新课:
1. 教学二分法的思想及步骤:
① 出示例:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好. ( 让同学们自由发言,找出最好的办法)
解:第一次,两端各放六个球,低的那一端一定有重球
第二次,两端各放三个球,低的那一端一定有重球
第三次,两端各放一个球,如果平衡,剩下的就是重球,否则,低的就是重球.
其实这就是一种二分法的思想,那什么叫二分法呢?
② 探究: 的零点所在区间?如何找出这个零点? → 师生用二分法探索
③ 定义二分法的概念:对于在区间[a,b]上连续不断且f(a).f(b)<0的函数y=f(x),通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection)
④ 探究:给定精度ε,用二分法求函数 的零点近似值的步骤如下:
a.确定区间 ,验证 ,给定精度ε;b. 求区间 的中点 ;
c. 计算 : 若 ,则 就是函数的零点; 若 ,则令 (此时零点 ); 若 ,则令 (此时零点 );
d. 判断是否达到精度ε;即若 ,则得到零点零点值a(或b);否则重复步骤2~4.
2. 教学例题:
① 出示例:借助计算器或计算机用二分法求方程2 +3x=7的近似解. (师生共练)
② 练习:求函数 的一个正数零点(精确到 )
3. 小结:二分法的概念, 二分法的步骤;注重二分法思想
三、巩固练习:1. p100, 1,题 2,题; 2. 求方程 的解的个数及其大致所在区间.
3. 用二分法求 的近似值; 4. 求方程的实数解个数: ;
5. 作业:p102 3,4题, 阅读p105框图
方程的根与函数的零点 篇2
一、教学内容解析
本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。
函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。
函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如定理应用的局限性,即定理的前提是函数的图象必须是连续的,定理只能判定函数的“变号”零点;定理结论中零点存在但不一定唯一,需要结合函数的图象和性质作进一步的判断。
对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。
函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。
本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。
二、教学目标解析
1.结合具体的问题,并从特殊推广到一般,使学生领会函数与方程之间的内在联系,从而了解函数的零点与方程根的联系。
2.结合函数图象,通过观察分析特殊函数的零点存在的特点,通过问题,理解连续函数在某个区间上存在零点的判定方法,并能由此方法判定函数在某个区间上存在零点。了解定理应用的前提条件,应用的局限性,及定理的准确结论。
3.通过具体实例,学生能结合函数的图象和性质进一步判断函数零点的个数。
4.在学习过程中,体验函数与方程思想及数形结合思想。
三、教学问题诊断分析
1.通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。由此作为函数应用的第一课时,有必要点明函数的核心地位,即说明函数与其他知识的联系及其在生活中的应用,初步树立起函数应用的意识。并从此
方程的根与函数的零点
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。