电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

小学五年级数学教案

2024-06-051

小学五年级数学教案(通用12篇)

小学五年级数学教案 篇1

  教学目标:

  1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

  2.培养学生的观察能力、分析能力和归纳概括能力。

  3.培养学生良好的学习习惯。

  教学重点:使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

  教学难点:使学生学会并理解求两个特殊数的最小公倍数的方法。

  教学实录:

  一、引入:

  师:同学们,现在是什么季节?

  生:春天。

  师:对,春天来了,草绿了,花开了,蜜蜂们开始忙碌起来了,其实在蜜蜂的王国里也有许多有趣的数学问题。大家看,(课件出示)蜜蜂们每天白天都忙碌的采花粉酿花蜜,但是,由于这个蜜蜂王国的日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来往往非常拥挤,这可怎么办呢?于是蜂王就想了一个办法。

  [点评:教师努力营造让学生爱学、乐学的课堂教学环境,密切联系有趣的生活实例,通过课件演示,创设教学环境,使学生在愉快的氛围中学习数学,同时使本课的数学知识赋予一定的价值]

  二、新授

  1.(1)师:蜂王把它们分成了2组,1组每30分钟回来一次,1组每40分钟回来一次。它想这样可就解决问题了。同学们,你们说蜂王是否解决了这个问题?

  生①:解决了。

  生②:没有解决,过一段时间,它们会一起回来的。

  师:有的同学认为这个办法可以,有的认为不行。请你们自己证明一下,在证明时,你可以利用手中的学具,也可以用你喜欢的其他方法。

  (2)学生讨论

  (3)学生汇报

  师:哪个小组来展示你们的研究成果?

  生①:用纸条证明,(学生在展台演示)每隔30分钟回来一次的,第四次回来要120分钟,每隔40分钟回来一次的,第三次回来也要120分钟,当120分钟时它们会同时回来,发生碰撞,所以不行。

  师:这种方法形象直观,非常好,还有不同和方法吗?

  生②:用数轴证明。(学生在展台演示)

  师:大家认为这种方法怎么样?

  生:简洁清楚。

  师:有的小组用的是摆纸条的方法,有的小组用的是数轴表示的'方法,都十分形象,还有不同的方法吗?

  生③:找倍数的方法证明。30的倍数有:30 60 90 120;40的倍数有:40 80 120 ,我发现它们有共同的倍数120,所以第120分钟它们会相撞。

  板书:30的倍数:30 60 90 120

  40的倍数:40 80 120

  (4)师小结:刚才同学们采用了不同方法,但都是先找出30和40的倍数,从而发现它们有公有的倍数120,看来是真的不行。

  [点评:培养学生的创新精神,首先要张扬学生的个性。教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法。]

  2.师:咱们换一个数试试。一组60分钟回来一次,一组90分钟回来一次。请同学们再来证明一下。

  学生验证

  学生汇报

  生:60的倍数有:60 120 180;90的倍数有:90 180。所以在180分钟时它们会相遇。

  师:恩,还是不行,我们发现60和90也有公倍数。

  3.师:那是不是任意两个数都有公倍数呢?请同学们在小组里交流一下。

  生:任意两个数都有公倍数,例如17和18的公倍数就是它们两个数的乘积。

  师:通过刚才同学们的汇报我们可以看出:任意两个数都有公有的倍数,也就是公倍数。什么是公倍数?

  生:两个数公有的倍数就是他们的公倍数。

  师:公倍数有多少个?

  生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。

  师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?

  生①:举例:2、4和5的公倍数是20。

  生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。

  师:那你能找出最大的或最小的公倍数吗?

  生:没有最大的,只有最小的。

  师:为什么?

  生:因为公倍数

小学五年级数学教案 篇2

  教学内容:

  人教版小学数学第九册《相遇问题》第58准备题、例5及做一做,并完成练习十三1-3题。

  教学目的:

  1、使学生理解相遇问题的意义及特点。

  2、学会分析相遇问题的数量关系,掌握相遇求路程的应用题的解答方法。

  3、明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。

  教学重点:

  理解相遇问题的数量关系,建立解题思路,掌握解题方法。

  教学难点:

  理解相遇问题中速度和、相遇时间和总路程之间的关系。

  教学准备:

  计算机辅助教学软件一套。

  教学过程:

  一、动画引入,揭示课题

  1、通过电脑演示了解相遇问题中两个物体的运动情况。

  电脑演示一声枪响后,两人相向而行,相遇前停下来。

  提问:一声枪响后,你看到了什么?注意他们的出发时间和运动方向是怎样的?

  (板书:同时出发、相向而行)

  如果他们继续走下去,结果可能会怎样?

  (相遇、不相遇就停下来、相遇以后相交而过)

  结果究竟怎么样呢?请同学们继续观察。

  电脑演示两人相遇。

  (板书:结果相遇)

  谁能完整的说说他们是怎样运动的?

  [评析:运用多媒体所具有的声、光、色、形的特点,创设动态情境,抓住"相遇问题"的关键,让学生形象地理解"同时出发"、"相向而行" 、"结果相遇"这几个相遇问题的几个基本要素,为例题教学扫除了文字障碍。并且通过生动形象卡通画导入新课,大大激发了学生学习的兴趣。]

  2、揭示课题:

  像这样,两人或两个物体同时从两地出发,相向而行,最后相遇,我们称这样的问题为相遇问题。

  (板书课题:相遇问题)

  过去我们学过一个物体运动的行程问题。你们还记得一个物体运动时,速度、时 间、路程三者之间有什么样的关系?

  (板书:速度×时间=路程)

  今天研究的相遇问题中,运动物体变成了两个,他们的速度、时间和路程三者之间又有什么样的关系呢?今天咱们就一块儿来研究这个问题。

  二、引导探究,教学新知

  (一)教学准备题。

  1、电脑配音显示准备题。

  我是张华,我的速度是每分60米。我是李诚,我的速度是每分70米。张华家距李诚家390米,他俩同时从家里出发,向对方走去。下面是他们两人走的时间和路程的变化情况表。请同学们先看动画,再完成下表,然后讨论以下两个问题。

  走的时间 张华走 的路程 李诚走 的路程 两人所走 的路程和 现在两人 的距离 1分 60米 79米 2分 3分

  讨论:①出发3分后,两人之间的距离变成了多少?说明了什么?

  ②相遇时,两人所走路程的和与两家的距离有什么关系?

  2、观察填表,讨论分析。

  (1)学生填写表格,并讨论屏幕上的两个问题。

  (2)全班校对答案。提问:2分时两人所走路程的和260米你是怎样计算的?(①120+140=260米②30×2=260米)

  (3)学生回答讨论的两个问题。

  小结:刚才我们通过自己观察、填写、讨论,发现了两个物体同时出发、相向而行,相遇时,两人所走路程的和恰好就是两家的距离。下面我们就利用这个规律自己来解决一些实际问题。

  [评析:在准备题教学中,教师放手让学生自己观察、填写、讨论,不但使学生深刻理解了两人所走的路程与两家距离的关系,为研究解题方法作了充分的准备,而且充分体现了学生的自主学习精神。]

  (二)教学例5。

  1、电脑出示例5及线段图:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分。两人在校门口相遇。他们两家相距多少米?

  2、学生尝试解答,两生上台板书。 65×4 + 70×4(65 + 70)×4=260 + 280 =135×4 =540(米)=540(米)

  3、学生自己分析解题思路:

  ①请用第一种方法的同学说说你是怎样想的?

  提问:题中只有一个4,为什么算式中出现了两个4?

  师:经过4分两人相遇,说明相遇时两人都行了4分,因此我们也可以把这个时间称为相遇时间。相遇时间在这种解法中要用到两次。

  ②请用第二种方法的同学说说你的解题思路又是什么?

  [评析:在学生已掌握路程、速度、时间三者间关系的基础上,联系学生已有的生活实际,通过自己探索,寻求出解答求相遇路程的思路,从而提高了学生分析问题和决问题的能力。]

  4、通过电脑演示强化两种解法的解题思路。

  通过刚才的分析我们知道,相遇问题中求路程有几种解法?请看屏幕。

  电脑演示:一种是先求出小强走的路程和小丽走的路程,再加起来就得到两人所走路程的和,也就是两家的距离;另一种解法是先把小强每分所走的路程和小丽每分所走的路程加起来,得到每分两人所走路程的和,因为经过4分相遇,再乘以相遇时间4,就得到了4分所走路程的和,也就是两家的距离。

  [评析:通过大屏幕色彩鲜艳的线段闪铄演示,加深了学生对第一种方法的理解;"速度和"的概念是第二种解法的难点,通过将两人每分各行的路程"移动、合并",形象地揭示了"速度和"的内涵。教者灵活地利用多媒体图象的移动、合并、返回的运动特点,揭示"速度和、相遇时间、距离"之间的关系,加深了学生对第二种方法的`理解。]

  5、总结数量关系式:请同学们观察这两种解法,你更喜欢哪一种?根据这种解法你发现在相遇问题中,速度、时间、路程三者之间有什么关系?

  (板书:和、相遇)有了这个数量关系式,你知道相遇问题中路程需要知道哪些条件?

  6、学生看书质疑。

  三、巩固练习,深化提高

  1、根据题意连线。

  两列火车从两地同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。

  44×2.5 两人的速度和 52×2.5 两地的距离 44 + 52 相遇时甲车所行的路程 (44 + 52)×2.5

  相遇时乙车所行的路程 44×2.5 +52×2.5 2、用两种方法解答。

  (59页做一做第1题)

  2、只列式不计算。(练习十三1、2题)

  学生独立完成,集体订正。反馈中引导学生把第2题与前面的习题比较,明确虽然两车运动方向、出发地点等情况与前面习题不同,但它们都是求两个物体所行路程的和,都可以用速度和×时间=路程得到。

  [评析:练习的设计由浅入深,有坡度有层次,目的性强。先通过连线题强化相遇问题中的各个概念;然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移;最后解决有变化的相遇问题,突破固定的思维框架。重点突出,一题一得,既减轻了学生的过重负担,又提高了教学效益。]

  四、闯关游戏,拓思创新:

  电脑演示闯关画面,配音出示游戏规则。

  1、第一关:猫和老鼠从两地相向而行,猫每分跑50米,老鼠每分跑6米。跑了2分,还相距120米,求两地相距多少米?

  提问:用速度和乘以时间得到了路程,为什么还要加120?

  2、第二关:甲、乙两辆汽车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地相距多少千米?

  3、第三关:甲乙两人从两地相向而行,甲每分行40米,乙每分行45米。相遇以后相交而过,走了4分,两人相距90米,求两地相距多少米?

  提问:为什么每一种算法都要减90?

  4、小结:今后同学们在解答两个物体运动的行程问题时,首先要弄清他们运动的时间、方向和结果,再灵活运用相遇问题的思路进行解答。

  [评析:首先,通过游戏,激发了学生的学习兴趣,使学生在乐中学习;其次,通过变式练习,让学生灵活应用所学知识解答问题,让学生明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。]

小学五年级数学教案 篇3

  教学目标

  1.理解和掌握循环小数的概念.

  2.掌握循环小数的计算方法.

  教学重点

  理解和掌握循环小数等概念.

  教学难点

  理解和掌握循环小数等概念.

  教学过程

  一、铺垫孕伏

  (一)口算

  0.8times;0.5= 4times;0.25= 1.6+0.38=

  0.15divide;0.5= 1-0.75= 0.48+0.03=

  (二)计算

  21divide;3= 15divide;3= 12divide;3= 10divide;3=

  教师提问:通过计算,你发现了什么?

  二、探究新知

  (一)教学例7

  例7 10divide;3

  1.列竖式计算

  教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)

  使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.

  所以10divide;3=3.33……

  (二)教学例 8

  例8 计算58.6divide;11

  1.学生独立计算

  2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,

  所以58.6divide;11=5.32727……

  3.观察比较 10divide;3=3.33…… 58.6divide;11=5.32727……

  教师提问:你有什么发现?

  (小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)

  4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

  教师板书:循环小数.像3.33……和5.32727……是循环小数.

  5.简便写法

  3.33……可以写作 ;

  5.32727……可以写作

  6.练习

  把下面各数中的循环小数用括起来

  1.5353…… 0.19292…… 8.4666……

  (三)教学例9

  例9 一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)

  1.学生独立列式计算

  130divide;6=21.666……

  asymp;21.67(十克)

  答:小汽车大约装21.67千克汽油.

  2.集体订正

  重点强调:保留两位小数,只要除到小数点后第三位即可.

  3.练习

  计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.

  28divide;18 2.29divide;1.1 153divide;7.2

  (四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?

  1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的.也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的'位数是有限的小数,叫做有限小数.

  2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10divide;3=3.3

小学五年级数学教案

小学五年级数学教案(通用12篇)小学五年级数学教案 篇1  教学目标:  1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?