电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

《圆柱的表面积》教学设计

2024-06-053

《圆柱的表面积》教学设计(通用12篇)

《圆柱的表面积》教学设计 篇1

  一、设计理念及设计思路。

  建立促进学生全面发展的数学课程体系是新课程改革的重要任务。数学要从以获取知识为着重目标转变为首先关注学生的发展,创造一个有利于学生活泼发展的教育环境,提供给学生一个充分探究、创新发展的空间。在学习中,学生是学习的主体,教师是教学活动的组织者、引导者和合作者。在这一教学理念的指导下,我在设计本节课时,重点和难点之处都是安排学生进行动手操作,讨论交流,学生参与到知识获取中,真正理解了圆柱的侧面积为什么是底面周长高,并能运用公式灵活计算。

  数学学习活动不单是单纯的接受与记忆,而是让学生亲身经历和体验富有个性的探究过程。因此设计剪一剪、看一看、找一找、议一议等教学活动。

  二、教学目标。

  知识与技能:

  1、理解表面积的含义;

  2、掌握圆柱的侧面积,表面积的计算方法,会运用公式计算表面积,解决有关的简单实际问题。

  过程与方法:

  经历圆柱的侧面积、表面积的公式的发现过程,体验利用旧知识迁移学习的方法。

  情感态度与价值观:

  感悟数学知识的能力,体会数学知识之间的相互联系。

  重点:理解求圆柱的侧面积、表面积的计算方法并能正确计算。

  难点:灵活运用侧面积、表面积的有关知识解决实际问题。

  教学准备:投影仪,圆柱模型、小剪刀。

  三、教学过程。

  (一)、复习引入。(投影出示)

  (1)口答下列各题:

  ①圆的半径是1厘米,圆的周长是多少?面积是多少?

  ②长方体、正方体的表面积如何计算。(单位:厘米)

  3                    3

  4                    3

  5                     3

  你能算出它们的表面积吗?

  (2)引入新课:我们已经掌握了长方体、正方体的表面积的计算方法,今天我们要来探讨圆柱表面积该如何计算。

  板书课题:圆柱的表面积

  (二)、探究新知。

  (1)圆柱的表面积的含义。

  师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?(讨论、交流)

  学生得出结论:圆柱的表面积=圆柱的侧面积+两个底面积

  (2)计算圆柱的表面积。

  ①组织学生将自制的圆柱模型展开(分组学习)。

  ②侧面展开可能会出现以下几种情况:长方形、正方形、平行四边形。

  ③以长方形为例,指导学生观察联系。

  长方形的长等于圆柱底面的周长,宽等于圆柱的高。

  得出结论:长方形的面积=   长      宽

  圆柱的侧面积=底面周长   高 

  师:圆柱的两个底面是圆形,我们早就会计算它的面积了,现在我们又推导出圆柱的侧面积计算公式,那么你们知道计算圆柱的表面积吗? 

  (3)解决实际问题。

  ①投影出示例4:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(复数保留整十平方厘米)

  ②组织学生读题,找出条件,说说实际是求什么问题。(分组学习)

  ③学生独立完成计算。

  ④反馈订正。

  订正时让学生讲解题思路和步骤及计算结果取近似值的方法。

  强调:这里不能用“四舍五入”法取近似值。在实际中,使用的材料都要比计算得到的结果多一些,因此要用“进一法”取近似值。

  三、课堂小结:圆柱的表面积怎样计算?

  四、应用反馈。(独立完成计算)

  1、一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

  2、广告公司制作了一个底面直径是1.5m,高2.5m的圆柱形灯箱,它的侧面最多可以张贴多大面积的海报?

  板书设计:

  圆柱的表面积

  圆柱的表面积=  圆 柱 侧 面 积  +  两 个 底 面 积

  宽(圆柱的高)

  长(底面圆的周长)  

  圆柱侧面积=底面周长高

《圆柱的表面积》教学设计 篇2

  教学过程:

  一、猜测面积大小,激发情趣导入

  1、用你们手上的a4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

  2、这两个圆柱谁的侧面积谁大?为什么?

  3、复习:圆柱的侧面积=底面周长高

  刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

  二、组织动手实践,探究圆柱表面积

  1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

  2、你们觉得这两个圆柱谁的表面积大?为什么?

  生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

  3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

  生:计算的方法

  师:怎么计算圆柱的表面积呢?

  圆柱的表面积=侧面积+两个底面的面积  (板书)

  4、那现在你们就算算这两个圆柱的表面积是多少?

  生:(不知所措)没有数字怎么算啊?

  师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

  生1:我想知道圆柱体的底面半径和高。

  生2:我想知道圆柱体的底面直径和高。

  生3:我想知道圆柱体的底面周长和高。

  ………

  师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

  5、汇报展示:

  情况一:半径:31.4÷3.14÷2=5(cm)

  底面积:3.1455=78.5(平方厘米)

  侧面积:31.418.84=591.576(平方厘米)

  表面积:591.576+78.52=748.576(平方厘米)

  情况二:半径:18.84÷3.14÷2=3(cm)

  底面积:3.1433=28.26(平方厘米)

  侧面积:31.418.84=591.576(平方厘米)

  表面积:591.576+28.262=648.096(平方厘米)

  师:通过我们计算验证了我们刚才的判断是正确的。

  接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

  生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

  生2:这样做挺麻烦的有没有更简单一点的方法呢?

  6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

  教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

  问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

  所以圆柱体表面积=长方形面积=底面周长(高+半径)

  用字母表示:s=c(h+r)

  我们用这个方法来验证一下我们的例2看是不是比原来简单?

  汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)

  那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。

  本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。

  三、分组闯关练习

  1、多媒体出示题目。

  第一关(填空)★

  沿圆柱体的高剪开,侧面展开后会得到一个(        )形,长是圆柱的(     ),宽是圆柱的(    ),因此圆柱的侧面积=(     )(      )。

  第二关★★

  一个圆柱的底面直径是2分米,高是45分米,它的侧面积是(        )平方分米,它的底面积是(     )平方分米,它的表面积是(      )平方分米。

  第三关(用你喜欢的方法完成下面各题)★★★

  一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?

  2、汇报结果,给予评价。

  我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。

  四、质疑(同学们还有什么疑问吗?)

  五、反馈小结:

  教学目标:1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:圆柱形物体、学具、多媒体课件

  教学重点:圆柱侧面积的计算方法推导。

  教学反思

  1、自主探究,体验学习乐趣

  以解决问题为主线,打破了“例题——习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。

  2、合作交流,加深对知识的理解深度。

  给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。

《圆柱的表面积》教学设计 篇3

  一、引入新课:

  1.引入。

  师:在上节课,老师布置同学们课后每人用纸板做一个圆柱体,你们带来了吗?这就是我们昨天刚刚认识的新的几何体朋友——圆柱,谁能向大家介绍一下你的这位几何新朋友?(★ 生答时要利用手中的道具)

  2.激发兴趣。

  【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米,高 30 厘米 。想请你帮设计部算一算,制作这样一个罐头盒至少需要多少铁皮?

  师:“要求制作这样的一个罐头盒至少需要多少铁皮,实际上,用数学语言来说,就是求什么?”

  师:这节课我们就一起来研究——怎样求圆柱的表面积。(板书:圆柱的表面积)

  二、探究新知。

  1.什么是“圆柱的表面积”?

  师:以前我们学过长方体和正方体的表面积,你能说说圆柱的表面积指的是什么吗?和周围的同学研究一下。(学生分组讨论)

  师:谁能用简炼的语言概括出:什么加什么就是圆柱的表面积?

  (生:圆柱的侧面积 + 两个底面的面积就是圆柱的表面积。)(教师板书)

  师:【课件演示这一过程】“你能用一个等式来概括这句话吗?”

  师贴出——圆柱的表面积=圆柱的侧面积+两个底面的面积

  也就是说,要求圆柱的表面积,必须知道哪两个条件?

  2。圆柱的侧面积。

  师:两个底面是圆形的,我们早就会求它的面积。//而它的侧面是一个曲面,怎样计算侧面积呢?这是我们这节课要解决的一个难点。(板书:侧面积)

  ①合作探究。

  “请同学们利用自己手中的圆柱体,小组研究一下——圆柱的侧面积该怎么求?

  学生分组探究。

  ②汇报交流。★※★※★

  师:哪个小组来汇报一下你们组的做法和结果?要到前面来,边汇报边演示你们的推导过程。

  ③.【课件演示变化过程】★师解说。

  (贴出:圆柱的侧面积=底面周长高 )

  强化:“要求圆柱的侧面积,必须知道什么条件?”  

  3.学习例1。【课件出示】

  一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数。)

  一人板演,全班齐练。

  板演者讲解题思路。集体订正。

  小结:我们在计算圆柱的侧面积时,必须知道什么条件?(底面周长和高。)可是有时候底面周长没有直接给出,我们可以根据底面直径或半径求出圆柱的底面周长。

  4.计算圆柱的侧面积。

  请同学们看屏幕——有这样几个圆柱体,你会求它们的侧面积吗?只列式,不计算。

  【课件出示】

  5.学习例2。

  师出示手中的教具:这是老师用纸板制作的圆柱体。(高15厘米,底面半径15厘米)现在,老师想考考你:要制作这样一个圆柱体,至少需要多少平方厘米的纸板?

  ①弄清几个面:要求“制作这样一个圆柱体,至少需要多少平方厘米的纸板”,实际上就是求这个圆柱的什么?  老师手中这个圆柱体一共有几个面?  三个什么面?

  【课件出示例2图】

  ②独立试算:(一个板演,全班齐练。)

  ③指名讲解题思路。

  ④小结:圆柱的表面积包括侧面积和底面积,要求圆柱的表面积,就是要求出这几个面的面积的总和。

  ⑤扩展:

  a.刚才这道题是“已知底面半径和高,求圆柱的表面积。”如果是“已知底面直径和高”,该怎样求圆柱的表面积?

  【课件出示例2改后的题】

  b.师:如果是“已知圆柱的底面周长和高”,又该怎样求圆柱的表面积呢?

  【课件出示例2改后的题】

  学生口算。

  ★ 师:如果“已知圆柱的侧面积和底面半径,你会求这个圆柱的高吗?”

  【课件出示】一个圆柱体的侧面积是188.4平方分米,底面半径是2分米。它的高是多少分米?

  d.指名说解题思路。

  三.实际应用。

  【课件出示例3】一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)

  ①请同学们认真的默读题,想想:题目让我们求什么?应该怎么求呢?

  ②强调“没盖”,“得数保留整百平方厘米。”

  ③独立计算。

  ④板演者讲解题思路。(讲清每步算的是什么)

  ⑤了解“进一法”。 

  ★强调:“这里不能用四舍五入法取近似值。在实际应用中,使用的材料都要比计算得到的结果多一些。  因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种求近似数的方法叫做进一法。”

  ⑥举一反三

  师:同学们,老师这里带来了几种不同物体的图片,它们都有一个部分是圆柱。怎样求它们的表面积呢?

  【课件出示】

  ★小结:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活计算。

  四.巩固练习。

  1.一顶厨师帽,高28厘米,帽顶直径20厘米,做这样一顶帽子至少需要多少面料?(得数保留整十平方厘米。)

  2.砌一个圆柱形的水池,底面直径2.5米,深3米。在水池的周围与底面抹上水泥,抹水泥的面积是多少平方米?

  3.回到引入题。

  【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米 ,高 30 厘米 。现在请你帮设计部算一算制作这样一个罐头盒至少需要多少铁皮?

  如果要制作200个呢?制作1000个呢?

  想一想:工人师傅在制作它时就按照我们刚才求出的数据准备料,行吗?为什么?

  师:如果给罐头盒贴一圈商标纸,你能算出每张商标纸的面积吗?

  五.实践应用。

  师:拿出自己制作的圆柱体,老师看看,谁的做的漂亮?(选出可以欣赏的。)

  “现在你能算出自己包装的圆柱体各用了多少平方厘米的彩纸吗?请同学们课后测量出你所需要的数据,然后算出来。”

  六.全课小结:

  师:今天这节课我们学习了《圆柱的表面积》,谈谈你有什么收获?

  师:你有没有想提醒同学们注意的地方?

  教学目标:

  1.知识目标:⑴.理解圆柱的侧面积和表面积的含义。

《圆柱的表面积》教学设计

《圆柱的表面积》教学设计(通用12篇)《圆柱的表面积》教学设计 篇1  一、设计理念及设计思路。  建立促进学生全面发展的数学课程体...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?