《圆柱的表面积》教学设计
《圆柱的表面积》教学设计(精选15篇)
《圆柱的表面积》教学设计 篇1
创设情境,引起兴趣
让学生拿桌着上的圆柱,说说圆柱是由哪几个面组成的。(两个底面和一个侧面)师:你们手中圆柱的侧面都用包装纸包了一圈。那么请你们想一想包这个侧面至少用了多大一张包装纸呢?其实要知道至少用了多大一张包装纸,就是要算出圆柱侧面的什么呢?(侧面积)板书:圆柱的侧面积。那圆柱的侧面积该怎么来计算呢?请同学们拿出手中的圆柱,沿侧面的高把包装纸剪开,研究研究。
二、自主探究,研究圆柱的侧面积
1.动手操作 ,小组交流
(1)学生独立操作,沿高剪开圆柱的侧面包装纸,看看展开后是什么图形。
(2)观察对比: 观察展开的图形各部分与圆柱有什么关系?
(3)汇报交流:说说展开后的图形是什么,并说说展开后图形的各部分与圆柱的关系。
这里可能会出现几种情况:
a.沿高展开的是长方形,它的长就是圆柱的底面周长,它的宽就是圆柱的高。b.沿高展开的是正方形,底面周长和高相等的情况下,就是个正方形,也是特殊的长方形。
2.圆柱的侧面积
教师小结:通过刚才大家的操作和交流,我们发现沿着圆柱侧面的高剪,展开后是个长方形,长方形的长就是圆柱的底面周长,宽就是圆柱的高。(用教具圆柱展示)算出这个长方形的面积,就算出了圆柱侧面的面积。
长方形的面积=长 宽
因为长方形的长就是圆柱的底面周长,宽就圆柱的高,因此,可以推算出:
圆柱的侧面积=底面周长高 即 s 侧 = c h
现在请大家用圆柱的侧面积公式试着算出自己圆柱体的侧面用料是多少。
学生测量,计算侧面积。
学生汇报:测量出了圆柱的底面周长和高,再用公式算出圆柱的侧面积。多请几个人汇报。这里可能还有学生会出现两种其他的测量方法。
a.测量出圆柱的半径和高,通过半径求底面周长,再乘高,也可以算出圆柱的侧面积。b.测量出圆柱的直径和高,通过直径求底面周长,再乘高也可以算出圆柱的侧面积。这里通过学生的叙述,得出另外两个侧面积公式:如果已知底面半径为r或直径为d ,圆柱的侧面积公式也可以写成:s侧=2∏rh或s侧=∏dh
教师小结。
3.算一算
出示课件(如下图)让学生算出圆柱的侧面积。
①
②
0.8
2
学生反馈。(到展示台)
请学生说清楚自己的计算过程,先通过半径或直径算出底面周长,再用底面周长乘高算出侧面积。
三、了解圆柱的表面积
师:刚才通过同学们的努力算出的它的侧面积,那如果老师想请你们算出这两个圆柱的表面积,你们会算吗?圆柱的表面积指的是什么呢?请同学们打开书13页,自学。
让学生汇报:圆柱是由三个面组成的,两个底面和一个侧面。
圆柱的表面积=圆柱的侧面积+两个底面的面积
用字母表示圆柱表面积的公式s表=2s底+s侧
侧面积我们前面已经研究出怎么算了。那底面积,你们会算吗?(会,就是算圆的面积:∏r²)
请学生算出圆柱的表面积。及时反馈。
四、巩固练习,自我提高。
1.一种压路机的前轮是圆柱形状的,轮宽2米,直径1.2米,前轮滚动一周,压路的面积是多少平方米?
出示完这道题,让学生提出题中不明白的部分:轮宽指的是什么?前轮滚动一周,压路的面积指的是什么?(教师展示滚动过程)
弄清楚这些问题后再让学生进行计算。(到展示台展示)
2.如果让你给下面的笔筒包上包装纸,你会怎样包,至少需要用多少彩纸?如果每平方厘米的彩纸需要0.1元,那么买这些彩纸需要多少元?
13cmm
8cm
这道题不限学生怎么包,是一道开放题。可以只包侧面,也可以侧面和一个底面都包。可能还会有同学里外都包(这时老师要说明笔筒的厚度不计)
把不同的算法拿到展示台展示。并且说明自己的方法。
五、全课小结
请学生谈谈自己的收获。
师:看来同学们的收获有很多。希望同学们把今天学到的知识运用到实际生活中去。
六、板书设计
圆柱体的表面积(一)
长方形面积 = 长 宽
↓ ↓ ↓
圆柱的侧面积=底面周长 高 圆柱的表面积=圆柱的侧面积+两个底面积
s侧=ch s表= s侧+2s底
s侧=2∏rh s侧=∏dh
《圆柱的表面积》教学设计 篇2
预设目标:
1、使学生理解和掌握圆柱体侧面积的计算方法,能正确计算圆柱的侧面积和表面积。
2、培养学生的观察、操作、概括的能力以及利用知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质。
教学重、难点:
理解和掌握圆柱体的侧面积和表面积的计算方法。
2、培养学生科学的学习态度。
教学过程:
一、检查复习,引入新课。
1、检查:拿出自制的圆柱,分别指出它的底面、侧面和高。
2、复习:点名说说圆柱两底的关系,圆柱高的条数和关系以及侧面展开可能是什么样的图形。
3、引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的表面积。
板书:圆柱的表面积
二、引导探究,学习新知。
1、侧面积的意义和计算方法。
⑴摸一摸自制圆柱体的侧面,谈一谈自己感觉到什么。
⑵想一想用我们已有的知识,能不能求出这个曲面的面积。(你能求出这个曲面的面积吗?)
小组讨论:有什么好办法求出圆柱的侧积吗?
⑶剪一剪自制圆柱,汇报交流结果。
⑷说一说:圆柱体的侧面可转化为已学过的平面图形是什么?
它的侧面积正好等于底面周长乘高的乘积。
板书:圆柱的侧面积=底面周长×高
⑸算一算:求出圆柱的侧面积,同学自己自作,交流结果。
小结:计算圆柱体的侧面积的方法是什么?
⑹做一做:
课本76页例1及77页的第一题。
2、表面积的意义及计算方法
⑴自读课本:什么是圆柱的表面积?
板书:圆柱的表面积=侧面积+2个底面积
⑵练一练:(小黑板出示)
⑶小结:
圆柱的侧面积等于底面积周长与高的乘积,圆柱的表面积等于两个底面积与侧面积的和,但在实际生活的应用中,有许多问题要根据实际情况,合理灵活地求出圆柱的表面积。
三、巩固练习,灵活运用
1、自学课本,书77页例3。
⑴分小组讨论;
⑵学生反馈。
2、问:要知道圆柱形的物体的侧面积,要求哪些面的总面积?
3、只列式不计算。
小黑板出示题目。
4、实践练习
⑴小组合作:测量并计算自制圆柱形实物的侧面积。
⑵讨论:要求出圆柱形的物体的侧面积,是求哪些面的总面积?需要知道哪些数据?怎样能测量这些数据?
⑶测量:测量所需的数据。
⑷计算:根据量得的数据。列出相应的算式并算出结果。
四、课堂小结:
说一说你今天学会了什么知识?
《圆柱的表面积》教学设计 篇3
知识与技能目标:
1.通过动手操作使学生理解圆柱体表面积的意义,掌握圆柱体表面积的计算方法。
2.会正确计算圆柱的侧面积和表面积。
教学重点:动手操作展开圆柱的侧面积
教学难点:圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
教具准备: 圆柱表面展开图
学具准备:纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。
教学过程:
一、创设情境,引起兴趣。
拿出圆柱体茶叶罐,(茶叶罐的表面贴上彩色纸)谁能说说圆柱有几个面? (学生答:三个面)它的上面是什么图形?(学生答:圆形)下面是什么图形?(学生答:圆形)它们相等吗?(摘下上下两个底面 进行比较)。
二、自主探究,发现问题
1、探究圆柱侧面的计算方法
教师提问:圆柱的侧面 展开是一个什么图形? (学生答:长 方形)(教师把侧面的纸展开)长方形和圆柱有什么关系?(教师演示:用圆柱的底面在长方形的长上滚动) 同学们你们发现了什么?(学生答:长方形的长等于底面的周长)(教师演示:用圆柱的高和长方形比较) 同学们你们又发现了什么?(长方形的宽等于圆柱的高)。
小结:这个长方形与圆柱体有什么关系?
长方形的长=圆柱体底面周长
长方形的宽=圆柱体的高
长方形的面积=圆柱的侧面积
即: 长宽 =底面周长高
所以,:圆柱的侧面积=底面周长高
s 侧 = c h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:
s侧=2∏rh
2、研究圆柱表面积
(1)、现在请大家试着求出这个圆柱体茶叶罐用料多少。
学生测量,计算表面积。
底面周长是31.4厘米,高是10厘米。
(2)、圆柱体的表面积怎样求呢?
底面半径:31.4÷2÷3.14=5(厘米)
底面积:3.1455=78.5(平方厘米)
侧面积:31.410=314(平方厘米)
圆柱的表面积:78.52+314=471(平方厘米)
得出结论:圆柱的表面积=圆柱的侧面积+底面积2
s=2πr² + 2πrh = 2πr(r + h)
三、实际应用
(教师把纸发给同学)现在请一组的同学们帮我制做一个圆柱形烟囱,二组的同学帮我制做一个圆柱水桶,三组的同学帮我制做一个圆柱形的油桶。 (教师检查验收)一组的同学你们做的烟囱为什么只有侧面?(学生答:因为烟囱只有侧面,没有底面,有底面就不通气)。二组做的圆柱形水桶为什么没有盖?(学生答:圆柱形水桶有盖装不进水)。三组的同学做的圆柱形的油桶为什么有盖?(学生答:因为圆柱形的油桶没有盖油会跑掉)。
四、回顾全课
本节课你收获了什么,有什么遗憾。
五、板书设计:
圆柱的表面积圆柱的表面积
长方形的长是圆柱体底面周长
长方形的宽是圆柱体的高
长方形的面积=圆柱的侧面积
即: 长宽 =底面周长高
所以,:圆柱的侧面积=底面周长高
s 侧 = c h
s侧=2∏rh
圆柱的表面积=圆柱的侧面积+底面积2
s=2πr² + 2πrh = 2πr(r + h)
数学思考:
运用知识的迁移,用“化曲面为平面”的方法得出圆柱体侧面积的计算方法;能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
问题解决:
使学生能根据实际情况区分圆柱体表面积的不同情况,并灵活地选择计算方法;通过比较、观察培养学生的观察能力和空间想象力;通过独立思考、交流合作,类比推理而成功地获取知识,并能积极地运用所学知识解决实际问题。
情感态度:
让学生体验出自己探究发现的快乐;感受到数学与日常生活联系广泛,激发起热爱数学的情感。
六、课后反思:
1、圆柱的表面积关键是要让学生理解表面积的公式,理解圆柱的侧面展开是一个正方形,正方形的长等于圆柱的底面周长,宽等于圆柱的高,比较正方形的长和圆柱的底面周长可以用圆柱的底面在长方形的长上滚动,这样学生既易理解,又直观形象。
2、实际应用中学生制作了圆柱形烟囱,圆柱形水桶,圆柱形的油桶既巩固了圆柱的表面积公式,又培养了学生的求异思维,鼓励了学生合作学习。
3、这适合于缺少电脑,实物投影仪的农村学校。
《圆柱的表面积》教学设计 篇4
一、引入新课:
1.引入。
师:在上节课,老师布置同学们课后每人用纸板做一个圆柱体,你们带来了吗?这就是我们昨天刚刚认识的新的几何体朋友——圆柱,谁能向大家介绍一下你的这位几何新朋友?(★ 生答时要利用手中的道具)
2.激发兴趣。
【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米,高 30 厘米 。想请你帮设计部算一算,制作这样一个罐头盒至少需要多少铁皮?
师:“要求制作这样的一个罐头盒至少需要多少铁皮,实际上,用数学语言来说,就是求什么?”
师:这节课我们就一起来研究——怎样求圆柱的表面积。(板书:圆柱的表面积)
二、探究新知。
1.什么是“圆柱的表面积”?
师:以前我们学过长方体和正方体的表面积,你能说说圆柱的表面积指的是什么吗?和周围的同学研究一下。(学生分组讨论)
师:谁能用简炼的语言概括出:什么加什么就是圆柱的表面积?
(生:圆柱的侧面积 + 两个底面的面积就是圆柱的表面积。)(教师板书)
师:【课件演示这一过程】“你能用一个等式来概括这句话吗?”
师贴出——圆柱的表面积=圆柱的侧面积+两个底面的面积
也就是说,要求圆柱的表面积,必须知道哪两个条件?
2。圆柱的侧面积。
师:两个底面是圆形的,我们早就会求它的面积。//而它的侧面是一个曲面,怎样计算侧面积呢?这是我们这节课要解决的一个难点。(板书:侧面积)
①合作探究。
“请同学们利用自己手中的圆柱体,小组研究一下——圆柱的侧面积该怎么求?
学生分组探究。
②汇报交流。★※★※★
师:哪个小组来汇报一下你们组的做法和结果?要到前面来,边汇报边演示你们的推导过程。
③.【课件演示变化过程】★师解说。
(贴出:圆柱的侧面积=底面周长高 )
强化:“要求圆柱的侧面积,必须知道什么条件?”
3.学习例1。【课件出示】
一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数。)
一人板演,全班齐练。
板演者讲解题思路。集体订正。
小结:我们在计算圆柱的侧面积时,必须知道什么条件?(底面周长和高。)可是有时候底面周长没有直接给出,我们可以根据底面直径或半径求出圆柱的底面周长。
4.计算圆柱的侧面积。
请同学们看屏幕——有这样几个圆柱体,你会求它们的侧面积吗?只列式,不计算。
【课件出示】
5.学习例2。
师出示手中的教具:这是老师用纸板制作的圆柱体。(高15厘米,底面半径15厘米)现在,老师想考考你:要制作这样一个圆柱体,至少需要多少平方厘米的纸板?
①弄清几个面:要求“制作这样一个圆柱体,至少需要多少平方厘米的纸板”,实际上就是求这个圆柱的什么? 老师手中这个圆柱体一共有几个面? 三个什么面?
【课件出示例2图】
②独立试算:(一个板演,全班齐练。)
③指名讲解题思路。
④小结:圆柱的表面积包括侧面积和底面积,要求圆柱的表面积,就是要求出这几个面的面积的总和。
⑤扩展:
a.刚才这道题是“已知底面半径和高,求圆柱的表面积。”如果是“已知底面直径和高”,该怎样求圆柱的表面积?
【课件出示例2改后的题】
b.师:如果是“已知圆柱的底面周长和高”,又该怎样求圆柱的表面积呢?
【课件出示例2改后的题】
学生口算。
★ 师:如果“已知圆柱的侧面积和底面半径,你会求这个圆柱的高吗?”
【课件出示】一个圆柱体的侧面积是188.4平方分米,底面半径是2分米。它的高是多少分米?
d.指名说解题思路。
三.实际应用。
【课件出示例3】一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)
①请同学们认真的默读题,想想:题目让我们求什么?应该怎么求呢?
②强调“没盖”,“得数保留整百平方厘米。”
③独立计算。
④板演者讲解题思路。(讲清每步算的是什么)
⑤了解“进一法”。
★强调:“这里不能用四舍五入法取近似值。在实际应用中,使用的材料都要比计算得到的结果多一些。 因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种求近似数的方法叫做进一法。”
⑥举一反三
师:同学们,老师这里带来了几种不同物体的图片,它们都有一个部分是圆柱。怎样求它们的表面积呢?
【课件出示】
★小结:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活计算。
四.巩固练习。
1.一顶厨师帽,高28厘米,帽顶直径20厘米,做这样一顶帽子至少需要多少面料?(得数保留整十平方厘米。)
2.砌一个圆柱形的水池,底面直径2.5米,深3米。在水池的周围与底面抹上水泥,抹水泥的面积是多少平方米?
3.回到引入题。
【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米 ,高 30 厘米 。现在请你帮设计部算一算制作这样一个罐头盒至少需要多少铁皮?
如果要制作200个呢?制作1000个呢?
想一想:工人师傅在制作它时就按照我们刚才求出的数据准备料,行吗?为什么?
师:如果给罐头盒贴一圈商标纸,你能算出每张商标纸的面积吗?
五.实践应用。
师:拿出自己制作的圆柱体,老师看看,谁的做的漂亮?(选出可以欣赏的。)
“现在你能算出自己包装的圆柱体各用了多少平方厘米的彩纸吗?请同学们课后测量出你所需要的数据,然后算出来。”
六.全课小结:
师:今天这节课我们学习了《圆柱的表面积》,谈谈你有什么收获?
师:你有没有想提醒同学们注意的地方?
教学目标:
1.知识目标:⑴.理解圆柱的侧面积和表面积的含义。
⑵.掌握圆柱侧面积和表面积的计算方法。
⑶.会正确计算圆柱的侧面积和表面积。
2.能力目标:能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点:理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点:能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备:
1.教师、学生每人用硬纸做一个圆柱体模型、另备圆柱体实物。
2.多媒体课件。
《圆柱的表面积》教学设计 篇5
课前先学——
课前,教师让学生在家做三件事:(1)自己动手制作一个圆柱;(2)写出制作的步骤;(3)制作过程中有什么发现?
课上对话——
师:谁来说说你是怎么做圆柱的?(听到老师这个提问,我在想教学从学生经历的实践体验入手,值得肯定)
生:我准备了三张纸、圆规和剪刀,……(这么自信的表达,一定很多有价值的内容,倾听,延伸,提炼,概括,问题一样得到解决。这课有听头)
师:你直接说出步骤。(这么无情地打断学生的讲话,有些失望)
生:我先准备纸,然后就卷成圆筒,再剪两个底面,就做出来了。(这是个应变能力很强的学生,老师要什么,他就能给什么。其间省略太多东西了)
师:好的。(这里的“好的”起着语言过渡的作用,然而,学生操作经历的概括,是否有助于理解圆柱的侧面和底面之间的关系,教师并没有关注)
师:侧面的长和底面的周长有什么关系?(看得出教师最急于提的是这个问题,也难怪,这个一个所有教案中都会出现的问题)
生: 相等。
师:是这样吗?请你把它剪下来。(“剪下来”的行为怎么不是学生为了说明问题的主动行为,而是教师为了板书和讲解发出的指令)
(学生刚拿出剪刀,老师就一把接了过来,把学生精心制作的圆柱剪开,贴在黑板上。有些学生小声说道:“真可惜。”)
师:同学们,你们看,(这是老师讲解前常说的一句话)这个圆柱的侧面展开是一个长方形,长方形的长等于圆柱底面的周长,长方形的宽等于这个圆柱体的高。(迫不及待地告诉,自我中心意识强)圆柱的表面积你们会算了吗?(一句口头禅式的提问,不用想都会知道学生会怎么回答)
生齐答:会了。(真的会了?还是应付老师的齐答)
如此“快节奏,高效率”的教学,看起来过程顺利,但是教师主导的课堂,能否实现教学目标,不得而知。
再读文本——
拿起教师的教学用书,我们读到了,本节课的教学还应实现这样的教学目标:
1.让学生探索研究长方形的长和宽与圆柱的关系,发现长方形的长等于圆柱的底面周长、长方形的宽等于圆柱的高;
2.在如何计算侧面积的推理过程中,锻炼形象思维和抽象思维,培养空间观念;
3.指导并训练学生规划解决问题的步骤,形成解决问题的思路。
对话学生——
课后,找到那位说制作步骤的学生,和他有了这样的对话:
师:现在愿意跟我们说说圆柱的制作过程吗?
生:老师根本没有让我把话讲完,其实为了今天的发言,我昨晚就准备了。制作圆柱其实并不容易,特别是制作规定底面和高的圆柱。我和同学们,基本都是先用一张长方形的纸做出圆柱的侧面,然后再用这个圆筒画出两个圆,作为圆柱的底面。这样制作看起来任务是完成了,但算圆柱的侧面积和底面积都不太方便。如果要是让我再制作一个,我会先量出长方形的长和宽,如果用宽作为高,这个长就要用两次,一次是用来求侧面积,一次用来算底面积,因为我发现长方形的长就是圆柱底面的周长。
师:你的发现,全班学生都会发现吗?
生:我相信我们班上有不少同学并没有很好的理解。
师:那怎么办?
生:老师不是在黑板上讲了吗?没理解的就背公式呗。
生:老师,我们在课前还讨论过这样的问题,就是为什么全班学生做出的圆柱都是瘦瘦高高的,身材都那么好。其实很多人做圆柱时,都是用长方形的长作高,宽的长度才是底面的周长,我并不赞成老师说:圆
《圆柱的表面积》教学设计
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。