说数教案
说数教案(通用4篇)
说数教案 篇1
教学目的:
1、了解数学的发展轨迹
2、培养科学精神
教学重点、难点:
学习课文把抽象内容说得具体生动的技巧
教学方法:
分析讨论法
教学设想: 一课时
教学步骤:
一、导语
德国著名数学家高斯说:“数学是科学之女王。”写《说数》就是要揭开这位美丽女王神秘的面纱,亲睹其绝代风华。
二、分析
一篇科学散文,1999年8月8日在《文汇报?笔会》发表
数学是思辨的科学,素以抽象艰深著称。其实,数学之思辨基于逻辑公理系统,如能按部就班循序而进,就可以化难为易。抽象源出于实际,而又应用于实际,如能从其原型说数,就可以具象思维来理解抽象原理。
例如,虚数和复数本为数学中较难的内容,有的大学生也视为畏途,但一些读过《说数》的中学生却能津津乐道,并提出问题。
又如山东有一位青年作家、诗人路也,她说:“以前不知道数学如此之美,如果我在中学时就读过《科学是美丽的》,定会选择数学作为自己的专业。”
圆周率的奇妙令人惊叹不已,于是联想到“天长地久有时尽,此恨绵绵无绝期”。
文中的小诗《零赞》:
你自己一无所有
却成十倍地赐予别人
难怪你这样美
像中秋夜的一轮明月。
著名作家、诗人邵燕祥在《科学家与诗》一文中对此诗评论道:“那介于抽象与具象之间的联想,出人意外。”今后赏月,你也许会想到“o”了。
以数入诗还有一个理由:诗与数学相似。好诗就如清澈的水晶那样晶莹剔透、流光溢彩,数学的逻辑公理系统也是通体透明、一尘不沾的。诗人与数学家是心灵相通的一对同命鸟,否则数学界怎么会也出了一位“普希金”呢?(见《科学是美丽的》,上海教育出版社)
结论:抽象艰深如数学,尚且能作为题材写科学散文,还有什么不能的呢?
三、讨论
1、《说数》中引用了诗文,有什么作用?
答:适时应景地引用诗词能使文章生色、读者生趣。冶真善美于一炉,乃科学散文之真谛。
2、科学对于现代美有什么作用呢?
答:在某种意义上,科学是现代艺术的催生者。例如,照相术的发明是欧洲古典写实派美术向印象派、抽象派……转化的契机,毕加索后期的一些作品受到高维几何空间的启发。有兴趣的读者可对此作进一步探讨。
3、“科学求真,真中涵美”,“神州五号”的升空、中国宇航员的登天,这当中涵着美吗?这些又是什么美呢?
答:庄子的《逍遥游》:“鹏之徙于南冥也。水击三千里。抟扶摇而上者九万里。……天之苍苍。其正色邪。其远而无所至极邪。其视下亦若是则已矣。”航天使神话成真,即为大美。
4、《说数》讲零时说:“负数和正数分列左右如雁翅般排开,零居中央,颇有王者气象。”讲圆周率时说:“最近利用电脑算到小数点后两千亿位!但比起‘此率绵绵无绝期’来,连沧海一粟也不如。”两处都运用了大量的修辞手法,有什么作用?
答:用的是拟人法。将零比作王者是直接拟人,将圆周率与《长恨歌》类比是间接拟人。如果没有读过《长恨歌》,后者的类比是想出不来的。将较抽象的对象比拟为熟悉的具体事物,有便于理解的作用;而且运用得当,也可以增添文采。
5、以前都说自然数含零,现在又说不含零,这是为什么?
答:据《辞海》“自然数”款,自然数不包括零。零独具一格,其来有自。0的引入比123……要迟得多,这可能是原因之一。
6、零既在实数轴上又在虚数轴上,为什么?
答:零是实数轴与虚数轴的交点,它既在实数轴上又在虚数轴上。这可以从两方面看:(1)整个复平面是连续的,零的左右连续性说明它在实数轴上,零的上下连续性说明它在虚数轴上;(2)分别取x和-x的平方根,然后令x趋向于0,这两个平方根就分别沿实数轴和虚数轴按同样方式以0为极限向它逼近,所以零确实是既在实数轴上又在虚数轴上。
四、课后作业
做《优化设计》练习
说数教案 篇2
4.
1 .文本全解。
(1) 作者简介
沈致远,江苏溧阳人, 1929 年 11 月出生。 1948 年 5 月因参加进步学生运动被学校开除, 1949 年在溧阳参加工作, 1956 年考入浙江大学, 1959 年被选拔提前毕业,留校任教。 1980 年由中国科学院派赴美国,在纽约理工大学做访问科学家。 1983 年起在美国许多著名的大工业公司任高级工程师及研究科学家等职务,从事微波电子学方面的研究开发工作。 1990 年受聘于杜邦公司中心研究院,先后担任研究员、院士等职务,现任资深院士,负责高温超导体应用方面的研究工作。
沈致远在国际专业学术刊物上发表过四十多篇学术论文。主要专业著作有:《微波技术》 ( 国防工业出版社 1979 年出版 ) ,被国内高等学校有关科系长期用作教材; 《高温超导微波电路》 (1993 年在美国出版 ) ,被美国哥伦比亚大学及中国清华大学等校选作博士研究生教材。在微波技术、微波应用及高温超导应用等领域中有多项发明,现拥有多项美国专利。
近年来沈致远致力于提倡科学文艺。 1998 年应邀在《文汇报》副刊《笔会》上开辟《天趣园》专栏,发表科学散文及随笔,题材涉及数学、物理、生物、环保、天文、信息。电脑、网络、经济等方面。这些文章结集为《科学是美丽的——科学艺术与人文思维》,由上海教育出版社于 年出版,佳评如潮,对科学散文创作起了一定的推动作用。
(2) 基本解读。
纯粹的数字在一般人眼中实在是枯燥乏味,所以一般人不太愿意跟数字打交道。而本文作者却对数字津津乐道,从自然数到负数、零,再到分数、无理数和复数,娓娓道来,如数家珍,或比喻,或拟人,或对比,使枯燥的数字洋溢着灵性和生气。
作者“说数”最具形象性的手法是引人数的实物原型,如自然数的原型可能是人的十个手指,负数的原型是债务;分数也有原型,三人平分一个西瓜,每人得三分之一;甚至复数和虚数也有实际的原型,电工学中利用复数表示交流电,利用虚数代表虚功。有了这样一些原型作依托,原先有些让人百思不得其解的概念,一下子豁然开朗了。
数字当中还隐藏着自然界的无穷奥秘,比如零的发明,圆周率的“此率绵绵无绝期”,都同属于大自然的鬼斧神工。文中对此作了重点介绍,让人不由为之惊叹。
作者是成就卓越的物理学家,但也具有极高的艺术天分和形象思维能力,文中所引的《圆周率》和《零赞》两首小诗,幽默风趣,如同明灭闪烁的两颗明珠,使略显沉闷的行文活泼灵动。
全文依照人类认识数的历史进程渐次展开,以实际生活中遇到的一个个难题,呼出数学史上的一个个发明。思路清晰,层次细密,结构上呈现出明显的层进式。下面是根据作者的思路画出的一个简单的示意图,它使文章的结构一目了然:
自然数→ ( 正数 ) 、负数 → 零→ ( 整数 ) 、分数呻 ( 有理数 ) 、无理数→ ( 实数 ) 、虚数、复数→未来的发展。
从第 1 自然段指出自然数是数学之起点,到第 14 自然段说明上文所举不过是人类至今的认识,期待数的发展史有“更新的篇章”,作者指点江山,气度不凡,行文举重若轻,从容不迫。
(3) 精华鉴赏。
善于运用各种方法来说明事理,这是本文的一个突出特点。其中对于圆周率的详尽介绍就是一个典型的例子。文中首先将圆周率与整数、分数作比较,具体说明了无理数“既不循环,也无终结”的特点。其中又将圆周率信息量的无限与北京图书馆里浩如烟海的藏书所包含信息量的极其丰富却终究有限作比较,让人为之惊叹。接着又引用作者的小诗《圆周率》,形象地表现了圆周率之独特个性。然后介绍了人类一直在计算圆周率的更精确数值,却终究不可穷尽的事实,让人为之震撼: “圆周率本是圆周与直径之完全确定的比值,但它产生的无穷数列却具有最大的不确定性 ! ”关于圆周率的介绍,让读者充分地感受到了数字中包含的无穷奥妙,感受到了看似枯燥的数字中蕴涵的诗情画意。
2 .习题解说。
(1) 第一题命题意图和参考答案。
命题意图:引导学生快速阅读课文,整体感知全文基本内容,抓住线索,理清结构。
参考答案:可参看“基本解读”。
(2) 第二题命题意图和参考答案。 '
命题意图:引导学生把握住本文的基本特点,掌握一些把抽象事理说明得生动具体的技巧 , 同时也是引导学生更深入地理解课文内容。
参考答案:全文运用最多的说明方法是举例子,前面“问题探究”具体分析的关于圆周率的介绍就是一个最详尽的例子。
此外,作者还善于运用下面的一些方法:
比喻。如把数字比喻成一个不断扩大的数学王国,把零比喻成其中的国王,形象地说明了零在数字中的重要性。
引用。如引用作者的两首小诗《圆周率》与《零赞》。
作比较。如把圆周率无限的信息量与北京图书馆中藏书丰富但有限的信息量作比较。
这些方法的运用使文章增添了灵气和活力,显得生动活泼,趣味盎然。试想,如果删去运用这些方法介绍的内容,全文将会显得空洞浮泛,读来味同嚼蜡。
(3) 第三题命题意图和参考答案。
命题意图:引导学生深入领悟数学的美,从全局去把握本文的深刻性,训练学生的分析与综合能力。
参考答案:
对称美。如第 4 自然段中“每个整数对应于数轴上的一个点,这些点以等距离互相分开。你看 ! 负数和正数分列左右如雁翅般排开,零居中央,颇有王者气象”。
奇异美。如第 4 自然段中“圆周率本是圆周与直径之完全确定的比值,但它产生的无穷数列却具有最大的不确定性,我们不能不为大自然的神奇奥妙而感到惊讶和震撼”。
创造美。如第 4 自然段中“— 1 的平方根是什么 ? 这可不好办 ! 大家都知道乘法的符号规则是:正正得正,负负得正,任何数的平方均为正数,据此— 1 的平方根就根本不存在。但不存在的东西可以创造出来 ! 这就是科学的创新精神。数学家为此创造了‘虚数'……”
举例略。
(4) 第四题命题意图和参考答案。
命题意图:进行语言表达训练,同时,让学生通过自己的语言实践去领会文章语言的特色,体会数字的巧妙。
3 .相关资料。
零——始于何时何地
零这个数对于我们数的系统来说是必不可少的。但是,当初开始创造数的系统时,并没有自动包含零。事实上,古埃及人的数的系统就没有零。公元前 1700 年左右, 60 进制数的位置系统发展起来。古巴比伦人用它和他们的 360 天的日历相协调,并进行复杂的数学运算,但其——中没有设计零的符号,而是在需要放置零的地方留一个空的位置。大约在公元前 300 年, 巴比伦人开始用作为零的符号。在巴比伦人之后,玛雅人和印度人发展了数的系统,该系统第一次用一个符号代表零,这个符号既起位置的作用,也起数零的作用。
数学文化的美学观
数学美的主要内容一般反映在对称美、简洁美、奇异美等方面。
高等数学发展到今天,数学内容和含义高度抽象深刻,符号也愈益丰富。
当你掌握了这些语言的时候,就更能体会到数学符号的精练、准确、简洁、无懈可击,更了解数学美。据说,大数学家高斯有一个思维特点,他的著作力求简洁、清晰、优美,他时常提醒、要求自己“把每一种数学讨论压缩成最优美简洁的形式”。
奇异美就是数学文化中的创造性美。培根说: “没有一个极美的东西不是在调和中有某些奇异 ! ”的确如此。奇异美是建立在求异思维的基础上的。比如,有理数稍一扩张,新数就被称为“无理”数;实数再一扩展,新数就被叫做“虚”数。实数之后出现“超实数”,复数之后出现“超复数”,有穷数之后又有“超穷数”。
和谐是数学美的最高境界。实际上,和谐就是一个度,是一种中庸的最佳状态。比例是关于模数与整体在测量上的协调。比例给人一种和谐,莫过于黄金分割法。
数学所讨论的宇宙,远比现实的所谓宇宙宏伟雄大;通常所说的宇宙只是三维空间,而数学则是把三维空间作为一部分的四维空间、五维空间…… n 维空间。数学是一座远远地超越了我们想像的华丽宫殿,站在这个无比庄严、宏伟的宫殿前的数学家们, 以崇敬赞叹的目光远眺着它的壮观、它的美妙,那些能够感受到这种数学美、宇宙美的人,是可以被称之为爱因•斯坦所谓的“有宇宙宗教性的人”。
品读科学之美丽
詹克明
用了几天时间通读完《科学是美丽的》全书,首先让我感到敬佩的是作者深厚的学养与广博的知识。全书涉及数理化天地生各基础学科中几乎所有的科学前沿问题,同时还兼顾哲学、艺术、经济、环保、医学以及社会等诸多问题。如数学中的数论、群论、分形几何、大数定理;物理学中的基本粒子、夸克、超弦、时间空间、真空起伏、冷核聚变、碳纳米管;天体物理中的宇宙年龄、黑洞、大爆炸理论、地外文明;生物学中的 dna 双螺旋结构、盖娅学说、克隆风波、基因食品、蚂蚁社会;环保学中的杀虫剂残毒、红树林保护;经济学中的知识经济、不可预测性;哲学中的自我意识、人工智能;还有诸如当今世界的全球一体化等问题。这些大多是近年科学发展中的重大问题。
作者不仅能够对这些艰深问题用浅近通达的文字表述,还能不失其科学内容的准确性,这点是很难得的。如今,面对高度分化、无比艰深、无比庞杂的科学分支,任何一个通才的知识掌握恐怕都难以应付。沈致远先生并非理科出身,又长期在工业界供职,其学识竟是如此渊博,何以如此 ? 我体会,首先在于他对科学前沿的最新发展始终保持浓厚的兴趣,有着一种锲而不舍的追求。只有永葆童稚好奇之心的人才会在谋生之余, 出自本能地保有一种强烈的探究欲,时刻跟踪科学全局
说数教案
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。