电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

探索数学本质心得体会报告 数学研究感悟(三篇)

来源:互联网作者:editor2024-02-012

从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?下面我帮大家找寻并整理了一些优秀的心得体会范文,我们一起来了解一下吧。

描写探索数学本质心得体会报告一

本节课,张教师用“美国挑战者号失事”作为引入,经过课件这样一段动态的影像资料导入,一下子吸引了学生的注意力,在给眼睛和心灵极大震撼的同时,让学生了解事故的原因是由一个不合格的零件造成的,不但让学生从血的教训中,懂得了次品的危害,并且了领悟到严格检验的必要性,同时把人文教育渗透在教学情景中。

根据学生生活经验,教学中选取了学生熟知的身边的实例活动,密切了数学与学生现实生活的联系,调动了学生原有的生活经验,使学生觉得数学就在自我的身边。这样就激发了学生探究问题的强烈欲望,激活了学生的思维,发挥了学生的主动性。引导学生把所学知识运用到日常生活中,并延伸到课堂外,让学生继续探寻知识,感悟了新知,发展了数感,体验了成功,获取了数学活动经验,真正体现了学生在课堂教学中的主体作用。

1、新课开始,张教师首先安排了从3个正品中找出一个次品来,就是从3瓶口香糖中找出一瓶少了3片的,这样设计贴近学生的实际生活,为学生喜闻乐见,也为下头探究如何找次品作好铺垫,充分激发学生的求知欲和表现欲。增加课前准备题从三瓶中找次品,利于学生进入研究状态,也研究照顾到中下层次学生。

2、紧之后张教师刻意安排了从4瓶中找次品这个环节,这一环节的作用就是为后面研究5和9瓶中找次品打基础,看似渺小,其实起奠基作用,让学生感悟从4瓶中找就要比从3瓶中找多了1次。为接下去体现划归的数学思想做准备。也为最佳策略的成因探索埋下伏笔。

3、最终安排从5瓶中找次品,仅要求学生说出找次品的方法,不需要进行规律的总结,让学生感受到问题解决策略的多样性。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不一样的方法中体验解决问题策略的多样性。但研究到学生用天平来称在操作上会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,为了便于学生操作和节省时间,张教师让学生用手模拟天平来进行实践探究。图示法较为抽象,对学生来说不容易理解,在那里只是让学生初步感知,教学时教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的学习打下必须的基础。

在解决9瓶口香糖中有一个次品(次品重一些),用天平称,至少称几次就必须能找到这个次品的问题时,张教师首先经过让学生自我动手操作,尝试称出从9瓶中找出次品的方法,以及发现最佳方法:平均分成3份去称,保证能找出次品所需的次数最少。在小组汇报时,教师将学生的操作过程用列表板书,使学生进一步理解并初步掌握这种分析方法。《出示表格》引导学生得出规律:待测物品数量为3的倍数时,仅有平均分成3份称才能保证找到次品的次数最少,其它任何一种分法都比它多。之后用12去验证发现的规律的正确性。最终运用规律解决27、81、243瓶…中去找次品,让学生感悟那里其实有规律可寻。学生经过比较,自悟出找次品的最优方案,使求知成为学生自觉的追求,促使学生对学习产生了强烈的需求,突破了教学的重难点,培养了学生的解决问题的本事。

要培养学生的创新本事首先就要培养学生的问题意识。教师根据教学资料选择恰当的时机让学生质疑,引导学生仔细观察、发现问题、提出有价值的问题,使学生学会思考,树立问题意识。在整个学习过程中采用语言、表情、手势等多形式多角度的评价,激励不一样层次的学生参与学习,使人人都不怕失败、勇于探索,在尝试体验中感知知识,提高综合本事,使全体学生都能在原有基础上得到必须的发展。

描写探索数学本质心得体会报告二

选修2-2

1.导数及其应用(约24课时)

(1)导数概念及其几何意义

① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。

②通过函数图像直观地理解导数的几何意义。

(2)导数的运算

① 能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x, y=x 的导数。

② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax b))的导数。

③ 会使用导数公式表。

(3)导数在研究函数中的应用

① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见选修1-1案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

(4)生活中的优化问题举例。

例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。(参见选修1-1案例中的例5)

(5)定积分与微积分基本定理

① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。

② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。(参见例1)

(6)数学文化

收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中数学文化的要求。(参见第91页)

2.推理与证明(约8课时)

(1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见选修2-2中的例2、例3)。

②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

③通过具体实例,了解合情推理和演绎推理之间的联系和差异。

(2)直接证明与间接证明

①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。

(3)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

(4)数学文化

①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。

②介绍计算机在自动推理领域和数学证明中的作用。

小编精心推荐:数学教师工作计划 | 数学教学计划

描写探索数学本质心得体会报告三

一.在问题的引入上,新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲:

1.数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过 程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。利用温度计引入调动学生学习的积极 性。

2.教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

二、在问题的探索上:

我采用了师生互动,通过师生双边活动产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索 发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在概念的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学 生出现的问题我给做出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。

三、习题的配备:

整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方。在讲解完例题后,让学生互 相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。但我总体感觉习题的量不够充足,学生的练习机会较少。

四.不足之处:

学生通过学习掌握了画数轴时原点的位置和单位长度可以实际情况来确定,但由于受课本练习册数轴图形的影响,有部分学生认为只有向右的方向才能作为数轴的正 方向,遇到向其它方向为正方向数轴图形就认为它不是数轴了。这有待在今后的教学中改进教学方法使学生加深对这方面的理解。

探索数学本质心得体会报告 数学研究感悟(三篇)

从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。心得体会对于...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
0.0312s