2023年小数的意义教学设计人教版 北师大版小数的意义教学设计(十四篇)
小数的意义教学设计人教版 北师大版小数的意义教学设计篇一
1、理解小数的意义,借助熟悉的十进制关系现实原型,多角度理解小数和分数的联系,知道每相邻两个计数单位之间的进率是10。
2、通过小数和分数的联系,培养学生系统归纳知识的能力。
3、通过对测量、观察、思考、操作等活动,以及学生对日常生活中的小数的广泛应用,使学生积累了丰富的感性认识,渗透迁移、类推思想。
4、通过自学、交流等活动,积累思考的经验和探究的经验。
5、在用小数进行表达的过程中,感受小数与生活的联系,进一步培养数感和观察、比较、抽象的能力,增强学习数学的兴趣和信心。
6、引导学生在测量、操作过程中经历“不够1米怎么表示”,感受小数产生的必要性,并尝试着解决生活中的实际问题。通过分层练习,让学生牢固掌握并重点练习小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义,培养迁移和类推的能力。
1、理解小数的意义
2、知道每相邻的两个计数单位之间的进率是10。
小数每相邻两个计数单位间的进率是10。
一、情境引入,揭示课题
同学们,上学期我们初步认识了小数,了解到小数在生活中具有十分广泛的应用,生活中处处有小数,小数也经常出现在日常生活的测量和计算中。你会用米尺测量吗?请两位同学合作到前面测量黑板的长度。引出在测量过程中,往往不能正好得到整数结果,不够1m怎么办?
今天我们一起来探究小数的意义(板书:小数的意义)
二、新授
(一)1、理解一位小数的意义
请看大屏幕(出示课件米尺图)
师:把1米平均分成10份,其中的一份是几分米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?
师:谁来说一说?3分米呢?7分米呢?
通过探究,发现:分母是10的分数可以用一位小数表示。
师:0.3m里面有几个0.1m?
0.7m里面有几个0.1m?1m呢?
小结:分母是10的分数,它的分子是几,里面就有几个0.1。
2、巩固练习(出示课件)
师:请你再思考一下:1里面有几个0.1?为什么?
(二)1、理解两位小数的意义
请看大屏幕(出示课件米尺图)
把1米平均分成100份,其中的一份是几厘米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?谁来说一说?4厘米呢?8厘米呢?
通过探究,发现:分母是100的分数可以用两位小数表示。
0.04m里面有几个0.01m?
0.08m里面有几个0.01m?1m呢?
小结:分母是100的分数,它的分子是几,里面就有几个0.01。
2、巩固练习(出示课件)
(三)1、理解三位小数的意义
请看大屏幕(出示课件米尺图)
把1米平均分成1000份,其中的一份是几毫米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?
谁来说一说?6毫米呢?13毫米呢?你能独立探究吗?
学生看课本33页,独立探究。(课件出示问题引导)
通过探究,发现:分母是1000的分数可以用三位小数表示。
0.006m里面有几个0.001m?
0.013m里面有几个0.001m?1m呢?
小结:分母是1000的分数,它的分子是几,里面就有几个0.001。
(四)迁移推理
同学们看课本33页,在米尺图的下面,小精灵说了一句话,咱们齐读一下。引导学生理解其中省略号的含义。
巩固练习:
1、教材36页 1、2两题
2、课件出示巩固练习
(五)认识小数的计数单位和进率
回忆整数的计数单位,引出小数的计数单位,理解每相邻两个计数单位之间的进率是10。
三、课堂总结:
这节课你有什么收获?
四、介绍小数的历史,拓展视野
五、布置作业:教材37页7、8两题。
小数的意义教学设计人教版 北师大版小数的意义教学设计篇二
教学内容
苏教版《义务教育课程标准实验教科书 数学》三年级(下册)第100~101页。
教学目标
1. 使学生经历认识小数的过程,初步了解小数的含义,会读、写一位小数,知道小数各部分的名称,知道自然数和整数。
2. 使学生在解决实际问题的过程中,培养初步的自主探究、合作交流的意识,感受数学和生活的密切联系,增强学好数学的信心。
教学过程
出示:1/2 58 5/12 0.5 1.2 5.8
提问:同学们,知道这些数分别是什么数吗?
谈话:后面的三个数,你平时在什么地方见到过?
学生可能会想到:铅笔芯的规格、眼睛的视力、商品的价格等。
揭题:是的`,在日常生活中经常接触到这样的数。它们都是小数,今天我们一起来认识小数。(板书课题:认识小数)
1. 提出问题。
提问:你想了解小数的哪些知识?
学生可能提出:小数是怎么来的?学了小数有什么用处?小数应该怎样读,怎样写?……
2. 教学第一个例题。
谈话:同学们想知道小数是怎样产生的吗?其实小数就来自我们的生活。先让我们来做这样一个活动:小组合作测量课桌面的长和宽,并用不同的数、不同的单位把测量结果表示出来。比一比,哪个小组想到的表示方法最多。
学生在小组内测量课桌面的长和宽,交流不同的表示方式。教师巡视,并作适当指导。
反馈:你们小组的测量结果是多少?想到几种不同的表示方法?
学生量出课桌面的长是60厘米,宽是40厘米,并用600毫米、60厘米、6/10米等表示课桌面的长,用400毫米、40厘米、4/10米等表示课桌面的宽。(根据学生回答,板书:6分米=6/10米,4分米=4/10米)
提问:除了上面几种表示形式外,你还能用其他方法来表示吗?
如果学生主动想到分别用0.6米、0.4米表示课桌面的长和宽,则让学生说一说是怎样想到的,0.6米和0.4米分别表示什么意思。
如果学生不能主动地用小数来表示,则讲述:其实,6/10米还可以用小数0.6米来表示,0.6读作零点六。(板书:= 0.6米 0.6读作零点六)也就是说把1米平均分成10份,其中的6份可以用0.6米表示。
提问:你能说一说0.6米表示的意思吗?
学生回答后,让同桌间互相说一说。
引导:那么4/10米还可以怎样用小数来表示呢?(板书:0.4米 0.4读作零点四)
提问:0.4米表示什么意思?
再问:那么你知道1分米是几分之几米吗?用小数怎么来表示呢?2分米、5分米、8分米呢?
学生交流时,分别让学生在米尺上指出0.1米、0.5米、0.8米的实际长度。
小结:十分之几米可以写成零点几米。
3. 做“想想做做”第1题。
先让学生弄懂题意,然后把答案填在书上。完成后,电脑出示答案,集体校对。
4. 教学第二个例题。
谈话:昨天三(5)班的李萍同学在育才商店里买了这样一些文具用品。我们一起来看看吧。
出示文具的图片及标价:
铅笔 圆珠笔 笔记本
3角 1元2角 3元5角
提问:一枝铅笔是3角钱,如果用元作单位,是多少元呢?(分别用3/10元和0.3元表示,并读一读、写一写。)
讨论:一枝圆珠笔的价钱是1元2角,怎样用元作单位,用小数来表示圆珠笔的价钱呢?请先在小组里讨论讨论,再说一说你是怎样想的。
反馈时,着重引导学生体会:1元2角是1元多2角,2角可以用0.2元来表示,1元和0.2元合起来就写成1.2元,1元2角可以写成1.2元。(板书:1元2角= 1.2元 1.2读作一点二)
提问:一本笔记本的价钱是3元5角,用元作单位的小数又怎么来表示呢?你是怎么想的?(板书:3元5角=3.5元 3.5读作三点五)
小结:几元几角写成小数就是几点几元。
5. 做“想想做做”第2题。
让学生在书上完成填空,并说一说是怎样想的。
6. 介绍自然数和整数。
让学生自由阅读书本第100页的最后一段,提出不懂的问题。
7. 游戏。
男同学代表整数,女同学代表小数,看到你所表示的数请你站起来。
8 0.2 3.8 0 59 95.4 1 1/4 1.6
谈话:我们已经认识了小数。现在我们以小组为单位,一起来进行比赛好吗?
1. 听录音,把听到的小数记录下来。
一只青蛙跳过0.4米的田埂,来到宽16.8米的河面上,踏上了0.2平方米的荷叶,狂叫三声,扑通一声掉进了深3.9米的河里。
2. 做“想想做做”第3题。
出示题目,让学生抢答,并说一说每道题中分数、小数的意义。
3. 回答下面的问题。
一包上好佳,价钱在1元到2元之间,请你猜猜它的价钱是多少?
小组合作讨论后把价钱写在纸上,交流时引导学生用“几元几角”和“几点几元”两种方式表达,并在数轴上分别找出每种可能价钱所在的点。
提问:今天你学得开心吗?你有什么收获?
课件介绍十进分数的发展史和古代数学家刘徽的杰出成就。
小数的意义教学设计人教版 北师大版小数的意义教学设计篇三
教学内容:本节课教学内容是新人教版本四年级下册第四单元p32页。
1、教材分析
教学主要内容:
一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10.
教材编写特点:
简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。
教学的重点、难点:
理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。
教学关键:
理解一位、两位、三位小数的意义。
基本活动经验:
在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。
二、学情分析
小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
学生学习该内容可能的困难:
教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。
学习方式:
充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。
3、教学目标
知识与技能
1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。
2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几.....知道相邻两个计数单位间的进率是10。
过程与方法
充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。
情感态度与价值观
培养学生的抽象、概括、归纳的思维能力和应用数学的能力。
4、教学过程
1、已知导入、情境感知
师:(出示教室场景图)同学们看,这个地方熟悉吗?
生:熟悉
师:是哪?
生:我们的教室
师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。
师:我们已经知道黑板的高度是1米(课件出示黑板的高度是1米),你有办法知道课桌和讲台的长度吗?
生:我知道了,讲台的长度、课桌的长度有1米多。
生:我知道讲台的长度跟1米差不多。
生:可以用重叠法
生:可以把黑板的高度那里,对直画一根虚线下来,再看
师:课桌的长度是1米多,具体多多少呢?你有办法吗?
2、展开,认识一位小数的意义
生:先测量出1米,多余的部分截取下来,再接着去测量。
师:谁还来说说......
生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。
师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)
生:是的。
师:接下来,谁有办法?
生:用多余部分去比,看看1米里面有几个那么长。
生:将1米平均分成10份,再比较。
师:比不出来啊,谁有办法?
生:1个1个去比,看看几个那么长正好是1米。就用除法解决。
师:是这样的吗?(课件演示)
生:是的
师:我们一起来数数
生:1个,2个,3个......正好10个这么长是1米。
(在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。
师:那现在知道怎么具体表示了吗?说说我们刚才的思路。
生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。
生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。
生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。
师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。
师:这就是我们这节课要研究的“小数的意义”(板书课题)
师:那你们知道小数0.1的意义了吗?
生:0.1表示的是十分之一。
师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。
生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)
师:那0.3里面有几个0.1呢?表示什么
生:0.3里面有3个0.表示十分之三。
师:还找到了其他的小数吗?
生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1
师:那1米里面有多少个0.1呢?
生:1米里面有10个0.1米
师:10个0.1是1
仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?
生:这些小数都表示十分之几。
生:这些分数的分母都是10,小数都是一位小数
生:分母是10的分数可以写成一起小数
生:10个0.1是1
师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。
我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。
师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?
(出示数轴图)你能在这里找到小数吗?
生:能(学生上台寻找并说明理由。)
师:为什么是这里呢?
生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。
生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3......
师:我们在学习数轴的时候知道数是按照从小到大的顺序依次排列的,所以0.1在这里。
师:那你能找到0.8吗?
生:某一个点,某一个范围(指出0.8的具体位置)
师:你是怎么找到0.8的?
生:数8个0.1(10份中数出其中的8份)
生:从1开始往左边数2个0.1(10-2=8)
师:那数轴上还有其他的小数吗?
生:有,学生说小数
师:如果将数轴无限的延长,这样的小数说得完吗?
生:说不完。
师:回归到米尺中,理清我们刚刚的思路:我们知道多余的`这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。
3、推进,认识两位小数的意义
师:课桌的长度已经具体的表示出来了,黑板的高度呢?
生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。
师:遇到了什么问题?
生:测量时,多余的部分不够1米,
生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。
师:那怎么办?
生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。
师:(课件演示)我们发现......
生:我们发现10个紫色部分的长度就是蓝色部分
生:把蓝色部分平均分成10份,紫色部分是其中的1份
生:是1厘米
师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?
生:有100个这样的紫色部分。
师:那就是说:将1米平均分成100份,其中的1份表示的长度就是紫色部分,可以用分数1/100米表示
生:还可以用0.01米表示。
师:对的,1/100米写成小数是0.01米。
师:那红色部分有多少个0.01米蓝色部分呢?
生:1米里面有100个0.01米。1分米里面有10个0.01米
师:那这样的4份呢?可以怎么表示?
生:4/100米,写成小数0.04米
师:请同学们拿出抽屉中的软尺。
师:这根软尺长度是多少?
生:1米、10分米、100厘米、1000毫米。
师:看来长度单位的换算学的很好哦。
操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。
学生汇报
生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。
生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。
生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。
师:(副板书20/100米=0.20米,2/10米=0.2米。)对于这两种表示方式,谁来说说他们的意义?
生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。
生:它们表示的长度是一样的,但是它们表示的意义是不同的。
师:仔细观察这些小数,你又有什么发现呢?
生:这些分数的分母都是100,小数都是两位小数
生:分母是100的分数可以写成两位小数
生:100个0.01是1
师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。
(课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)
师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。
4、拓展,认识三位小数、四位小数的意义
师:(出示课件显示1毫米)这是多长?
生:1毫米
师:你是怎么知道的?
生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....
师:1米里面有多少个这样的1毫米呢?
生:1000个(1米里面有1000个1毫米),因为1米=1000毫米
出示课件
师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?
生:1/1000米,0.001米。
师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。
师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?
生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米
生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。
生:1厘米也可以用分数百分之一米表示,用小数0.01表示。
师:也就是说10个0.001等于1个0.01。
师:观察这些小数,你发现了什么
生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。
五、总结及应用
(观察板书可以知道)
分母是10.100.1000......的分数可以用小数表示。
小数的计数单位是十分之一、百分之一、千分之一......写作0.1、0.01、0.001......
每相邻两个计数单位之间的进率是( 10 )
生:因为我们刚刚在黑板上标记了
生:进率是100
生:因为我们知道人民币1分钱是0.01元,1角钱是0.1元,10个1分钱等于1角,所以进率是10
生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10.
(学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)
写出合适的分数和小数
说一说你的收获
生:我知道了“小数的意义”
生:我知道了分母是10.100.1000......这样的分数可以写成小数
生:我知道了小数的计数单位
......
是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。
板书设计
1米 1 计数单位
1/10米=0.1米 十分之一 0.1 一位小数
1/100米=0.01米 百分之一 0.01 两位小数
1/1000米=0.001米 千分之一 0.001 三位小数
1/10000米=0.0001米 万分之一 0.0001 四位小数
五、教学反思
《课标》指出:学生的数学学习应当是一个生动活泼、生动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在动手、动脑、动口中理解知识,掌握方法,学会思考,获得积极的情感体验。
一、运用多种手段,提高教学实效
本节课中将现代化教学手段与常规教学手段相结合,提高了教学效率。从引入课题、讲授新课、反馈练习,大部分内容均制成多媒体课件,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启迪学生思维,增大了课堂容量,大大提高了课堂效率。在授新一位小数的意义时,扎扎实实的抓住了重难点,两位小数的意义学习时,让学生借助实物(软尺)进行操作:找小数,写小数,说小数的意义,从而加深了实际与理论的联系,强化了对理论知识的理解,三位小数的引入更是在已有的软尺基础上,复习了长度单位之间的关系,从而让学生能够理解三位小数的意义。同时,本节课又注重了常规教学手段的运用,课题、一位、二位、三位小数的几个关系式等,均由老师板书。提纲挈领的板书,帮助学生形成完整的知识结构。
2、情景导入,回到最初
借助教参中的情景导入,但是在设计时抛开了已有的尺子测量,让学生只根据已有的1米进行思考。也就是在遇到不能用整数表示的时候,要想其他的办法进行解决(如:想出一个新的名数单位,比如分米、厘米、毫米来解决问题;或者想到用分数表示,借助分数从而过度到小数),让学生明白知识不是原本就是这样的。是因为我们在实际的问题当中不能解决,必须借助新的知识来解决,就此重新回顾了小数的产生与发展。
3、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。
许多教师认为,小数的意义这一内容用传统的接受式教学方法比较恰当,因为小数的意义是约定术成的,新型的学习方式(动手实践、自主探究与合作交流)也只能是一种课堂的装饰。这种思想,是我在设计教学时考虑得最多,也是我最难突破的瓶颈。因此在本课的设计上,我以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。
六、案例研讨
《小数的意义》这一课。为我们诠释了如何让学生在基础数学的学习过程中,触及数学本质的深处,更深切的感受数学的精神、思维和方法的魅力。同时,本节课的教学不落俗套,特别是在教学设计上为我们展示了独有的环环相扣。
1、回归本质,回到最初
在第一个环节一位小数的意义的设计中,教师提出:“在没有测量工具的前提下,你能想办法知道课桌的长度吗”这个问题,学生想到了最为原始的办法:用非整数表示或者产生一个比米更小的名数来表示。这样的教学设计,让学生能触及数学本质。
2、数与型结合,便于学生理解
两位、三位小数的意义教学设计中,更是将实物——1米的软尺搬进课堂,让学生去观察、寻找“以米为单位可以用两位小数表示”的地方,从而让学生感受知识并不是凭空捏造的,而是有凭有据的,让学生理会到数学是一门严谨的学科。脱离实物过渡到三位小数时,让学生在操作、观察中感知,在感知后依据课件抽象、概括,在思维碰撞中提高认识的学习过程。
3、概念性的教学是否可以全面放开,让学生自己去发现、去总结
既然是教学,肯定会有不完美的地方,概念性质的教学多数都是教师满堂灌的形式。在主张把课堂还给学生的情况下,能否大胆的放手,让学生自己去发现、去找凭找据、去总结、去运用呢?
附:评课老师简介
何琴,小学高级教师,校级骨干教师。20xx年担任教育部“国培计划(20xx)”—
2023年小数的意义教学设计人教版 北师大版小数的意义教学设计(十四篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


