2023年简易方程教学反思简短简易方程解方程1教学反思(7篇)无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。简易方程教学反思简短简易方程解方程1教学反思篇一老方法:x+4=20x=20-4依据运算之间的关系:一个加数等于和减另一个加数。新方法:x+4=20x+4-4=20-4依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题?在我的教学过程中真的出现了问题。1.无法解如a-x=b和a÷x=b此类的方程新教材认为,利用等式基本性质解方程后,解象x+a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与x÷a=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓“相比原来方法,思路更为统一”的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和a÷x=b的方程回避掉了。原因是小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而a÷x=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题?在我的教学过程中真的出现了问题。1.无法解如a-x=b和a÷x=b此类的方程新教材认为,利用等式基本性质解方程后,解象x+a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与x÷a=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓“相比原来方法,思路更为统一”的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和a÷x=b的方程回避掉了。原因是小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而a÷x=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶段学习。我认为为了要运用等式基本性质,却回避掉了两类方程,这似乎不妥。更重要的是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或a÷x=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我认为,这样的处理方法,有时更会无法避免地直接和方程思想发生矛盾。如“3千克梨比5千克桃子贵0.5元。梨每千克2.5元,桃子每千克多少元?”合理的做法应是“设桃子每千克x元”,从顺向思考,列出方程为“2.5×3-5x=0.5”。然而,按新教材的编排,因为学生现在不会解这样的方程,所以要根据数量关系,转列成“5x+0.5=2.5×3”之类的方程。又如:课本第62页中的“爸爸比小明大28岁,小明х岁,爸爸40岁。”很多学生根据“爸爸比小明大28岁”列出40-х=28,可是无法求解,所以又转成х+28=40。很明显,第二个方程是和方程思想的基本理念相违背的。我们知道,方程最大的意义,就是让未知数参与进式子,使考虑问题更...